TRIM3 Database Design

I. An Introduction to the TRIM3 Database

A. An Overview

B. The CTD Schema

Tables, CTD.Util, Data Change Logs, Simulation Version Control

C. An Input Schema

Tables, Distribution Statistics

D. The Results Schema

Tables, Views, Results.util

E. Backup and Recovery Policy

For a Single Server, Replication Between Servers

F. Security

User Privileges and Groups, Server and Network Security

II. Data Replication and Change Logs

A. Managing Data Replication Using Scripts

III. Security for Simulation Runs in TRIM3

A. Viewing Microdata Results

B. Setting the Security Policy

IV. TRIM3 Server Components Outside MySQL

A. Scheduling Backups and Maintenance Scripts

B. The Simulation Engine

Revised 3 April 2007
(documentation converted for MySQL)
I. An Introduction to the TRIM3 Database

A. An Overview
[image: image1.wmf]CTD

Results

CPS1994

CPS1993

CPS1993LINK

TRIM3

Run

Instruction

SSINATIONAL

...

SUMMARYTABLE

BASESSI

BASESSIMONTHLY

...

HOUSEHOLD

FAMILY

PERSON

...

CPS1993

HOUSEHOLD

FAMILY

PERSON

...

CPS93DB

SID

USER/

SCHEMA

TABLE

ROLE

HOUSEHOLD

FAMILY

PERSON

...

DB LINK

VIEW

SCHEMA

OWNER

DEVELOPER

MMOORE

BLEVY

...

HHSUSER

UIUSER

SZEDLEWS

LGIANNAR

...

JTUREK

RSNIPPER

...

...

A TRIM3 Database in Oracle - An Overview

Oracle Objects

SYSDBA

MBUETTGE

All database objects are stored under one of three types of schema: Central TRIM Dictionary (CTD), Input, or Results. The CTD schema contains the following:

· The dictionary of all TRIM3 data elements and their possible values. Not only is this useful for documentation, but the information it contains can be used to create any of the program rules, input, or microdata results tables.

· Descriptions of all simulation runs defined by users. This information is used by the TRIM3 engine, and links program rules with microdata results.

· Program rules (instructions) for all simulations.

· Data used in converting the raw CPS into a TRIM3 input schema.

· Comments about the TRIM3 system from various users. Used to report system bugs or suggest enhancements.

See section 1-B for more information on the CTD schema.

Input schemas store microdata imported into TRIM3 from statistical surveys, such as the CPS. There is an individual schema for each year’s data. Less-often-used input schemas may reside on a remote database. In this case, a database link is created, allowing the data to be accessed just as if it was actually stored on the TRIM3 server. See section 1-C for more information on Input schemas.

The Results schema stores the two types of data which are the output of TRIM3 simulations: summary tables and microdata results. The summary tables give an aggregate summary of the simulation, while the microdata give detailed variables at levels which correspond to the Input schema used by the simulation. See section 1-D for more information on Results schemas.

The Flow of Data in a Typical TRIM3 Simulation

[image: image2.wmf]CTD Schema

Input Schema

Results Schema

TRIM3

Engine

Navigator

1. Write

Program

Rules

2. Begin

Simulation

6. Retrieve

Results

3. Read

Program

Rules

4. Read

Necessary

Microdata

5. Write

Results

B. The CTD Schema

The TRIM3 Data Dictionary

All data elements in TRIM3 are documented in the data dictionary, which is stored in two tables: Terms and Enumerators. The Terms table contains one record for each data element. TRIM3 data elements can be identified uniquely by a combination of three fields: Simulation, Term, and SourceTable.

	Terms
	

	Field
	Usage

	Simulation
	For Program Rules and Results terms, the name of the simulated program associated with the data element. For Input, Simulation = ‘Input.’ Foreign key to CTD.Simulations.

	Term
	The name of the data element. Note that this is not unique. For example, ‘BenefitsEligibleFor’ is a term in SSI, AFDC, and Food Stamps.

	SourceTable
	The name of the table on which the data element can be found.

	Category
	The Program Rules for each Simulation are grouped into more specific categories. Input and Results data are not currently assigned categories, but this may change.

	CpsLocation
	The location of this data element on the CPS file. Relevant only for Input data.

	CpsName
	The original name of this data element on the CPS file, if there was an equivalent. Relevant only for Input data.

	CpsUniverse
	The statistical universe of the CPS equivalent of this data element. Relevant only for Input data.

	DataType
	The SQL data type of the data element.

	Description
	A long text description of the data element and its use.

	Enumerator
	For array or state array program rules, the name of the Enumerator which contains descriptions for each array index. Links to the Enumerators table.

	GroupName
	Name of the group to which the term belongs. Null if the term is not part of a group.

	MaximumValue
	The maximum acceptable value for this field.

	MaxNumberOfValues
	The maximum number of values this data element can take. This is only used for Program Rules where SourceTable = <Simulation>Array or VariableList.

	MinimumValue
	The minimum acceptable value for this field.

	OldName
	The original TRIM2 name of the data element, if there was an equivalent.

	Sequence
	Sequence number determining this term’s display order among the other terms in its simulation.

	SubCategory
	The name of the subcategory to which this term belongs. NULL if the term is not in a subcategory.

	TrimUniverse
	The statistical universe of this data element, as used in TRIM.

	ValueEnumerator
	Descriptions of the valid values which this term can take. Links to the Enumerators table.

Rules for assigning terms to categories, subcategories, and groups:

· Categories, subcategories and groups are optional.

· Subcategories and groups cannot have members in different categories.

· Groups cannot have members in different subcategories.

· Members of a group may or may not belong to a subcategory.

· Members of categories and subcategories can be from any source table in the simulation, but group members must be from the same table.

· Subcategories are currently used only for program rule (CTD) terms.

· Categories, subcategories and groups will be displayed in the order determined by the sequence numbers of their members. To set the sequence numbers, use the Term Ordering Editor, which is part of the TRIM3 Navigator’s Dictionary Editor.

The Enumerators table stores sets of values and their associated descriptions. These sets of values can be associated with any of the following:

· A TRIM3 data element.

· A set of values for fields not in the TRIM3 data dictionary, such as ConversionType and CreateMicrodata.

· An enumerated type in the TRIM3 engine code.

The enumerators table also has a Version field, which allows the values of an enumerator to vary from year to year, or from one code version to the next.

	Enumerators
	

	Field
	Usage

	Enumerator
	The name of an enumerated type.

	Version
	Can be either ‘Default,’ a year, or a code version.

	Value
	One of the valid integer values which the enumerated type can take

	Label
	A short label describing the value. Generally, the actual label used in C++ code.

	Description
	A longer text description of the value.

The Operators table stores information about all of the operators available to the forms language.

	Operators
	

	Field
	Usage

	Program
	A Simulation name.

	OpCode
	An integer uniquely identifying a forms-language operator.

	NumOperands
	The number of operands which this operator requires.

	NumRecords
	The number of records necessary to store this operator with its operands

	IsMultiple
	Is this operator part of a multiple-operator instruction?

	Label
	The mnemonic text for the operator which appears on forms-language code.

	Description
	A longer text description of the operator and its use.

The InputSchemas table holds information for all available Input schemas.

	InputSchemas
	

	Field
	Usage

	Schema
	An MySQL schema name.

	Year
	The year for which this data was collected.

	Description
	A longer text description of the source and uses of this data.

The Simulations table describes all available simulated programs.

	Simulations
	

	Field
	Usage

	Simulation
	Name of the simulated program

	OldName
	TRIM2 name of the program.

	Description
	A description of the simulated program.

	HelpContext
	The help context ID number for the detailed discussion of the simulated program in SimHelp.HLP. See Maintaining TRIM3 Documentation for more information.

The Program Rules

There are four types of program rules which a simulation can have:

· National

· State (Optional)

· Array (Optional)

· StateArray (Optional)

· VariableList (Includes form language instructions)

National, State, and Array rules are stored in a separate table for each simulated program, e.g., SSINational, AFDCState, FederalTaxArray. VariableList instructions for all simulations are stored in the VariableList table.

A set of simulation rules for a given simulation is identified by a SimulationID, which is part of the key of all tables which store program rules.

	<Sim>National
	

	Field
	Usage

	SimualtionID
	The SimulationID identifying a set of program rules.

	Termn
	All data elements defined in Terms, where Simulation = <Sim> and SourceTable = <Sim>National

	<Sim>State
	

	Field
	Usage

	SimualtionID
	The SimulationID identifying a set of program rules.

	State
	FIPS State code.

	Termn
	All data elements defined in Terms, where Simulation = <Sim> and SourceTable = <Sim>State

	<Sim>Array
	

	Field
	Usage

	SimualtionID
	The SimulationID identifying a set of program rules.

	Sequence
	The array index.

	Termn
	All data elements defined in Terms, where Simulation = <Sim> and SourceTable = <Sim>Array

	<Sim>StateArray
	

	Field
	Usage

	SimualtionID
	The SimulationID identifying a set of program rules.

	State
	FIPS State code.

	Sequence
	The array index.

	Termn
	All data elements defined in Terms, where Simulation = <Sim> and SourceTable = <Sim>Array

	VariableList
	

	Field
	Usage

	Simulation
	The name of a simulated program.

	Term
	The name of a program rule defined in Terms

	SimulationID
	The identifier for a set of program rules.

	Sequence
	An array index.

	Data
	The name of an input or results data element defined in Terms

	SourceTable
	The table on which Data can be found

	DataSimulationID
	The SimulationID from which to get the value of Data

	SourceDatabase
	The schema on which data resides

	ConversionType
	An annual-to-montly or monthly-to-annual conversion algorithm. Defined by the Enumerator ‘ConvertType.’

	Operator
	Forms language operator code.

	CodeIndex
	Forms language index.

Note that for forms language instructions, the non-key fields have no fixed meaning.

To find the differences in program rules between two SimulationIDs, you can use the data comparison utility (see section H below).

Simulation Runs

A Simulation Run is a set of related SimulationIDs. You can simulate multiple programs in a single run, or simulate the same program multiple times. The Runs table has a record for every Simulation Run. The RunDetails table has a record for every SimulationID which is part of a Run. When a new record is added to Runs, Client is automatically set to the name of the user who inserted the record and DateSimulated is set to the current system time. It is extremely important that the Client field contain a valid user name, since any simulation-based security scheme must depend on that information (See the Security Policy section).

	Runs
	

	Field
	Usage

	RunID
	A name identifying the Simulation Run.

	InputSchema
	The name of the Input Schema used by this run.

	OutputSchema
	The name of the output schema used by this run. Currently, this is always ‘Results.’

	Client
	The name of the TRIM3 user who created this run.

	DateSimulated
	The date the Run was last executed.

	StartingHousehold
	The first HouseholdID to include in the run.

	EndingHousehold
	The last HouseholdID to include in the run.

	Description
	A long text description of the details and purpose of this run.

	RunDetails
	

	Field
	Usage

	RunID
	A name identifying the Simulation Run.

	Simulation
	The name of a simulated program included in the run.

	SimulationID
	The instance of the simulated program to run.

	AlignmentTables
	True if Alignment Tables should be generated for this run component.

	BasicTables
	True if Basic Tables should be generated for this run component.

	CreateMicrodata
	Determines whether results microdata should be generated for this run component. The values can be found in the Enumerator ‘CreateMicrodata.’

	CustomTables
	True if Custom Tables should be generated for this run component.

	Description
	A long text description of the run component.

	DetailedTables
	True if Detailed Characteristics Tables should be generated for this run component.

	SimModule
	Name of the simulation code version to be used with this simulation ID, e.g., ‘FoodStamps_1_5.’

	SimulationOrder
	The order in which components of the run are to be executed.

	StateTables
	True if State-level Tables should be generated for this run component.

	Std_Error_Tables
	True if standard error tables should be produced.

	Template
	Name of the spreadsheet template to use for displaying this simulation ID’s summary tables.

	UnitType
	Some Simulations require the specification of a Unit Type.

CPS Conversion

The Map table holds information to convert the raw CPS file into a TRIM3 Input schema. This function is currently under development.

Comments

The Comments table holds user comments about TRIM3.

	RunDetails
	

	Field
	Usage

	Time
	The date and time this comment was issued.

	Reviewer
	The name of the TRIM3 user who made the comment

	Section
	The section of TRIM3 with which the comment deals.

	Comment
	The text of the comment.

	Type
	The type of comment. See the Enumerator ‘CommentType’

	Status
	The status of the comment. See the Enumerator ‘CommentStatus’

 CTD Change Logs

There are three logs of changes to the TRIM3 CTD. DictionaryChangeLog records inserts, updates, and deletes to the main data dictionary tables, Terms and Enumerator. ChangeLog records updates to program rules. Inserts and deletes are not logged. RunDeleteLog records information about runs which have been deleted. See III.C. for instructions on creating the triggers which actually do the work of logging changes.

	DictionaryChangeLog
	

	Field
	Usage

	ID
	Sequential change ID. Assigned automatically when inserting records to the log.

	Time
	Date and time of the change

	UserName
	Name of the user who made the change

	CTDTable
	Name of the table changed, ‘TERMS’ or ‘ENUMERATOR.’

	Simulation
	For changes to Terms, the simulation name.

	Term
	For changes to Terms, the term name.

	Enumerator
	For changes to Enumerator, the enumerator name

	Value
	For changes to Enumerator, the enumerator value.

	ColumnName
	For updates, the name of the column updated. For inserts, ‘INSERT.’ For deletes, ‘DELETE.’

	FromValue
	For updates, the value of the column before the change. For inserts, NULL. For deletes on Terms, the source table name. For deletes on Enumerator, the description.

	ToValue
	For updates, the value of the column after the change. For inserts on Terms, the source table name. For inserts on Enumerator, the description. For deletes, NULL.

	ChangeLog
	

	Field
	Usage

	Time
	Date and time of the change

	UserName
	Name of the user who made the change

	SourceTable
	Name of the program rule table changed.

	SimulationID
	Name of the simulation ID changed.

	Term
	Name of the term or program rule changed.

	FromValue
	Original value of the rule.

	ToValue
	New value of the rule.

	State
	For state or state array program rules, the state code changed.

	Sequence
	For array, state array, or variable list program rules, the sequence number changed.

	RunDeleteLog
	

	Field
	Usage

	Time
	When the run was deleted

	UserName
	Name of the user who deleted the run

	RunID
	ID of the run deleted.

Simulation Version Control

Multiple versions of each simulated program are stored in the CTD database. A simulation may request any of the available versions. These tables provide the simulation engine with the proper files. The SIM_DLL table stores the DLL file for each version (See V.B. below).

	Sim_Dll
	

	Field
	Usage

	Simulation
	Name of the simulated program

	Module
	Version name, e.g., ‘FoodStamps_1_5.’

	File_Data
	DLL file stored in binary format.

	Description
	Version description.

SIM_H and SIM_CPP store the corresponding C++ header and source files.

	Sim_H
	

	Field
	Usage

	Simulation
	Name of the simulated program

	Module
	Version name, e.g., ‘FoodStamps_1_5.’

	File_Data
	Header file stored in binary format.

	Sim_Cpp
	

	Field
	Usage

	Simulation
	Name of the simulated program

	Module
	Version name, e.g., ‘FoodStamps_1_5.’

	File_Data
	Source file stored in binary format.

C. An Input Schema

[image: image3.wmf]CTD.Terms

HouseholdID

Term1

Term2

...

Household

SimulationID

FamilyID

Term1

Term2

...

Family

SimulationID

PersonID

FamilyID

Term1

Term2

...

Person

SimulationID

PersonID

FamilyID

Term1

Term2

...

Adult

SimulationID

PersonID

Month

FamilyID

Term1

Term2

...

AdultMonthly

SimulationID

PersonID

FamilyID

Term1

Term2

...

AdultCurrent

SimulationID

PersonID

FamilyID

Term1

Term2

...

AdultPrevious

Results.

<SimID>

Results.

<SimID>Monthly

Simulation = 'Input'

SourceTable =

'Household'

Simulation = 'Input'

SourceTable =

'Family'

Simulation = 'Input'

SourceTable =

'Person'

Simulation = 'Input'

SourceTable =

'Adult'

Simulation = 'Input'

SourceTable =

'AdultMonthly'

HouseholdID =

HouseholdID

PersonID =

PersonID

HouseholdID =

HouseholdID

PersonID =

PersonID

Month = Month

Simulation = 'Input'

SourceTable =

'AdultCurrent'

Each Input Schema contains a single year’s data from a statistical survey such as the CPS, along with additional data elements computed during the conversion process. Currently, the CPS is the only survey used, but there are plans to add others in the future. The data is organized by demographic level in the following tables:

	Household
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	Termn
	All data elements defined in Terms, where Simulation = ‘Input’ and SourceTable = ‘Household’

	Family
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	FamilyID
	An integer uniquely identifying each family within a household. Starts at 1 for the first family in a household.

	Termn
	All data elements defined in Terms, where Simulation = ‘Input’ and SourceTable = ‘Family’

	Person
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	PersonID
	An integer uniquely identifying each person within a household. Starts at 1 for the first person in a household.

	FamilyID
	An integer uniquely identifying each family within a household. Starts at 1 for the first family in a household. Not a key field, but needed for join queries with Family.

	Termn
	All data elements defined in Terms, where Simulation = ‘Input’ and SourceTable = ‘Person’

	Adult
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	PersonID
	An integer uniquely identifying each person within a household. Starts at 1 for the first person in a household.

	FamilyID
	An integer uniquely identifying each family within a household. Starts at 1 for the first family in a household. Not a key field, but needed for join queries with Family.

	Termn
	All data elements defined in Terms, where Simulation = ‘Input’ and SourceTable = ‘Adult’

Adult contains economic data relevant only to adults. Every record in Person where EconomicAdult = 1 will have a corresponding record in Adult. Other records in Person are children.

	AdultCurrent
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	PersonID
	An integer uniquely identifying each person within a household. Starts at 1 for the first person in a household.

	FamilyID
	An integer uniquely identifying each family within a household. Starts at 1 for the first family in a household. Not a key field, but needed for join queries with Family.

	Termn
	All data elements defined in Terms, where Simulation = ‘Input’ and SourceTable = ‘AdultCurrent’

AdultCurrent contains current-year employment data at the Adult level. It is stored in a separate table because of a limitation on the number of fields that a single table can have.

	AdultPrevious
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	PersonID
	An integer uniquely identifying each person within a household. Starts at 1 for the first person in a household.

	FamilyID
	An integer uniquely identifying each family within a household. Starts at 1 for the first family in a household. Not a key field, but needed for join queries with Family.

	Termn
	All data elements defined in Terms, where Simulation = ‘Input’ and SourceTable = ‘AdultPrevious’

AdultPrevious contains previous-year employment data at the Adult level. It is stored in a separate table because of a limitation on the number of fields that a single table can have.

	AdultMonthly
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	PersonID
	An integer uniquely identifying each person within a household. Starts at 1 for the first person in a household.

	Month
	An integer specifying the month associated with each record.

	FamilyID
	An integer uniquely identifying each family within a household. Starts at 1 for the first family in a household. Not a key field, but needed for join queries with Family.

	Termn
	All data elements defined in Terms, where Simulation = ‘Input’ and SourceTable = ‘AdultMonthly’

Distribution Statistics

Statistics on the distribution of input variables are available in the TermStatistics and ValueStatistics tables. TermStatistics shows over-all numbers for each variable, while ValueStatistics shows the distribution of each value of each variable.

	TermStatistics
	

	Field
	Usage

	SourceTable
	The name of an input table

	Term
	The name of an input variable

	MinValue
	The lowest value of a variable

	MaxValue
	The highest value of a variable

	NumZeroValues
	The number of observations in which the variable=0

	NumNonZeroValues
	The number of observations in which the variable is not 0

	SumValues
	The sum of all values of a variable

	MeanValue
	The average of the variable’s values

	MeanNonZeroValues
	The average of all non-zero values

	WNumNonZeroValues
	The weighted number of observations in which the variable=0

	WNumZeroValues
	The weighted number of nonzero observations

	WSumValues
	The weighted sum of all values of a variable

	WMeanValue
	The weighted average of a variable’s values

	WMeanNonZeroValues
	The weighted average of all non-zero values

	ValueStatistics
	

	Field
	Usage

	SourceTable
	The name of an input table

	Term
	The name of an input variable

	Value
	A value of the specified input variable

	ValueCount
	The number of observations having that value

	WValueCount
	The weighted number of observations having that value

	Percent
	The percent of observations having that value

	Wpercent
	The weighted percent of observations having that value

D. The Results Schema

The Results Schema contains tables which store the two types of data created by TRIM3 simulations, summary tables, and microdata. Summary table data is stored in a single table, SummaryTables:

	SummaryTables
	

	Field
	Usage

	Simulation
	The name of a program simulated by TRIM3

	SimulationID
	A name uniquely identifying an instance of a Simulation. See the RunDetails table in the CTD schema.

	TableID
	A name uniquely identifying each table generated by a Simulation.

	Type
	An integer identifying a block of table rows.

	SubType
	An integer identifying an individual row within Type.

	Col1
	Data for the first column of the table.

	...
	...

	Col10
	Data for the tenth column of the table.

The definitions of summary tables are stored in three tables, SummaryTableDefinitions, SummaryTableColumns, and SummaryTableRows.

	SummaryTableDefinitions
	

	Field
	Usage

	Simulation
	The name of a program simulated by TRIM3

	TableID
	A name uniquely identifying each table generated by a Simulation.

	Category
	The category to which the table belongs. Valid values are in CTD.Enumerator where Enumerator = ‘SummaryTableCategory’

	Worksheet
	The name of the worksheet in the template workbook which holds the template for this table, e.g. ‘SSI Basic T1.’

	Description
	Description of the summary table and its function.

	SummaryTableColumns
	

	Field
	Usage

	Simulation
	The name of a program simulated by TRIM3

	TableID
	A name uniquely identifying each table generated by a Simulation.

	Sequence
	The number, 1-10, identifying a column of table data.

	SpreadsheetColumn
	The name of the column in the template worksheet in which this column’s data should be printed, e.g., ‘A.’

	SummaryTableRows
	

	Field
	Usage

	Simulation
	The name of a program simulated by TRIM3

	TableID
	A name uniquely identifying each table generated by a Simulation.

	Type
	An integer identifying a block of table rows.

	SubType
	An integer identifying an individual row within Type.

	SpreadsheetRow
	The name of the row in the template worksheet in which this row’s data should be printed, e.g., ‘1.’

Microdata is produced at two levels: Person and Monthly. Person-level microdata tables are named after the SimulationID which created them. Monthly-level microdata tables add the word ‘Monthly’ to the end of the SimulationID. Some simulations do not produce monthly data.

	<SimID>
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	PersonID
	An integer uniquely identifying each person within a household. Starts at 1 for the first person in a household.

	FamilyID
	An integer uniquely identifying each family within a household. Starts at 1 for the first family in a household. Not a key field, but needed for join queries with Family.

	Termn
	All data elements defined in Terms, where Simulation = <Simulation> and SourceTable = <SimID>

	<SimID>Monthly
	

	Field
	Usage

	HouseholdID
	An integer uniquely identifying each household.

	PersonID
	An integer uniquely identifying each person within a household. Starts at 1 for the first person in a household.

	Month
	An integer specifying the month associated with each record.

	FamilyID
	An integer uniquely identifying each family within a household. Starts at 1 for the first family in a household. Not a key field, but needed for join queries with Family.

	Termn
	All data elements defined in Terms, where Simulation = <Simulation> and SourceTable = <SimID>Monthly

To compare summary tables or microdata results for two simulations, use the data comparison utility (Section H below).

E. Backup and Recovery Policy

UI will maintain three servers: a development server, a production server, and a backup server. The backup server will be a mirror of the production server, and will be available immediately in the case of a system failure on the production server. See the data replication section below for more information on the relationships between these servers.

For each TRIM3 Server:

· TRIM3 databases will run in NO_ARCHIVELOG mode.

· Full, off-line backup after tablespace changes.

· At least three active control files, with backup control files and BACKUP TO TRACE.

· All redo logs will be mirrored.

· Use the Export utility to maintain backup copies of data at the following frequency:

	Schema
	On Creation
	Monthly
	Weekly
	Daily

	SYSTEM
	Full
	Full
	Cumulative
	Incremental

	CTD
	Full
	Full
	Full
	Full

	Results
	Full
	Cumulative
	None
	None

	Input
	Full
	None
	None
	None

Daily exported copies of both the development and production CTDs for at least the past year will be kept on archive tapes.

Data will be replicated between the TRIM3 servers as follows:

DEVELOPMENT

PRODUCTION

BACKUP

[image: image4.wmf]Data Dictionary

Data Dictionary

Data Dictionary

Program Rules

Program Rules

Program Rules

Microdata Results

Microdata Results

Microdata Results

Manual update when

a new TRIM3 version

goes into effect

Manual update when

a simulation run is

copied from develop-

ment to production

Automatic update

Automatic update

Manual update for some

baselines and frequently

used runs

· All changes to the data dictionary and program rules are immediately replicated from production to backup, so that if the production server goes down at any time, no simulation runs will be lost.

· Deletions of program rules on production will not be immediately replicated, allowing simulation runs created and inadvertently deleted since the previous day’s backup to be restored. Program rules deleted from production during the course of the day are deleted from backup at the end of the day.

· Microdata results will be manually copied from production to backup for some baselines and runs whose results are often used by other simulation runs. In general, the prefered way for replicating microdata results to the backup server is simply to re-run the simulation on that server.

· When a simulation run needs to be copied from development to production, or vice versa, this can be done manually using a copy run utility (See I.B.)

· The data dictionary on the production server is updated only when a new version the simulation engine is ready for production.

See Section III for a more detailed description of how data replication is implemented.

Database Backup and Recovery for a Single Server

Due to the nature of TRIM3 database use, it is not feasible to run the MySQL server in Archive Log mode. Each simulation run with output microdata can potentially generate over 100 MB of redo log information. Also, these simulations will frequently be re-run in the same day with different program rules. Were this redo log activity to be archived to disk, the disk space per day required to store it would be greater than the total size of the MySQL server’s data files.

This, however, is not a problem for backup and recovery. It is rarely necessary to store any backup copies of results microdata, since they can be re-created simply by running the simulation again with the stored values of its program rules. Therefore, the TRIM3 backup and recovery strategy is based on preventing the loss of program rules. Backups of the full program rules database are done each day for each TRIM3 server. Daily backups are available on disk for four weeks, and are archived to tape afterwards. The only the only simulation results ever backed up are for annual baselines, which are static and are used as input to a number of alternative simulations. Backup copies are made as soon as the baselines for a given year are finalized.

The TRIM3 database backup procedures for a single server are as follows:

	Action
	Frequency
	Description

	Full export of program rules data
	Daily
	Export of all program rules necessary to run all simulations currently defined on the server. Available for four weeks on disk. Archived to tape afterwards.

	Export of baseline results microdata
	On finalization of baselines for a given year
	Backed up separately to allow fast recovery, since many simulations use this data as input.

	Export of input microdata
	On conversion of CPS data for a given year
	Backed up when the CPS conversion results have been verified.

	Full cold backup of server
	On structural changes in the database
	Performed whenever the configuration of tablespaces or datafiles changes.

Recovery procedures are as follows:

	Action
	Process

	Recovery of a single simulation run
	Program rules database for the last day of the run’s existence is loaded into a temporary database. The run’s program rules are then copied to the TRIM3 server using the CopyRun utility.

	Recovery of a corrupted program rules tablespace
	Tablespace is re-created, and latest day’s data is restored from the program rules backup using MySQL’s Import utility.

	Recovery of a corrupted input microdata tablespace
	Tablespace is re-created, and the input data for that year is restored from backup using Import.

	Recovery of a corrupted simulation results tablespace
	Tablespace is re-created, baseline results for all years are restored from backup using Import.

	Reconstruction of an entire server
	Latest full server backup is restored. Latest day’s program rules backup is restored using Import.

Database Disaster Recovery Using Server Replication

The above backup and recovery procedures prevent loss of data. They would, however, result in a loss of time while policy analysts wait for a recovery procedure to complete if analysts can not do their work on the other production server
F. Security

User Privileges and Groups

All TRIM3 database users are assigned to one of four roles. The privileges of each role are summarized below:

	
	
	CTD
	
	
	Input
	Results
	
	

	Role
	System
	Tables
	Program Rules
	Procedures
	Tables
	Tables
	Microdata
	Procedures

	DBA
	All
	All
	All
	All
	All
	All
	All
	All

	Developer
	None
	All
	All
	Execute
	Read-Only
	All
	All
	Execute

	UIUser
	None
	Read-Only
	All
	Execute
	Read-Only
	Read-Only
	All
	Execute

	HHSUser
	None
	Read-Only
	All
	Execute
	Read-Only
	Read-Only
	All
	Execute

Users from other locations, such as OMB will have their own groups with the same general permissions as HHSUser. Each user will use his or her own logon ID when using TRIM3. Whenever a simulation run is created, the ID of the user who created it is saved. In this way, a user group’s access to simulation runs owned by another group can be managed by a central security policy. See Section IV below for details.

Objectives of the TRIM Network Security Policy

· The primary objective of TRIM3 security is to guard against the sabotage or disruption of TRIM3 services, rather than the protection of TRIM3 data. The only confidential TRIM3 data are the program rules and results for a handful of alternative runs relating to time-sensitive policy proposals. Even if someone were to break into the operating system of a TRIM3 server, he or she would have to understand all of the following to extract anything meaningful:

1. The distribution of data files on the MySQL server.

2. How MySQL encodes its data.

3. The structure of the TRIM3 database.

4. The use and meaning of all relevant TRIM3 program rules.

5. How a set of program rules ties in with a current policy proposal.

6. How to analyze TRIM3 simulation results. In summary, data confidentiality is not much of an issue.

· In the event of a service disruption on the production server, the backup server may be used.

· The development server, which has no backup server, must be protected more strictly. Access from outside UI should be eliminated.

· TRIM3 services must be easily accessible using any current web browser, ODBC version, Windows 95 version, or Windows NT version. We have had problems accessing services from client sites which implemented internet proxy servers. Therefore, we recommend against putting any proxy between the user and the TRIM3 servers.

Server and Network Security

The following internet services are currently provided to TRIM3 users outside the Urban Institute:

	Service
	Description
	Host
	Port

	MySQL RDMBS (5.0)
	TRIM3 data stored in MySQL
	All TRIM3 servers
	3006

	Simulation Engine
	In-house server software
	All TRIM3 servers
	2000

	WWW Server
	TRIM3 WWW home page
	All TRIM3 servers
	80

	Anonymous FTP Server
	TRIM3 Navigator automatic update. Read-only.
	All TRIM3 servers
	21

	MySQL 4.1 (legacy)
	Old database server … maintained for if needed
	All TRIM3 servers
	3007

	Development interface
	Used for testing, need a ASPE-TRIM server login to use
	ASPE-TRIM server
	8080

All packets from outside the UI network addressed to ports other than these are rejected using packet filtering provided by our ISP.

In addition, shared directory services are available for UI users of TRIM3.

Security in TRIM3 is currently implemented in three different types of host authentication, i.e., user name/password verification:

	Type
	Description
	Host

	Windows NT
	Authentication for shared directories
	All TRIM3 servers

	MySQL
	Authentication for database services
	All TRIM3 servers

	WWW Server
	Authentication for WWW services
	All TRIM3 servers

Remaining TRIM3 Vulnerabilities

· TRIM3 user names and passwords are sent to the server without encryption, and are thus subject to interception. This is the biggest remaining risk, and can be eliminated only by the implementation of encryption technology.

· The simulation engine does not verify user names and passwords when accepting connections. However, the functionality of this service is so specialized that it does not pose much of a security risk.

· Any weaknesses in MySQL security can be exploited by anyone on the internet. MySQL’s security has proven to be very reliable, so this too poses a relatively small risk

· Weaknesses in the WWW server can be exploited by anyone on the internet, giving access to the file system and system services. Web servers and the HTTP protocol have had a number of security problems. However, since the TRIM3 WWW site is not on any of the TRIM3 servers, subverting this service will gain the attackers nothing beyond the web site documents themselves.

· Potential weaknesses in the FTP server. This service has proven secure and reliable. Attempts have actually been made to break into it, but have not succeeded.

· TRIM passwords are stored in clear text in the database for retrieval, an internal user could get the passwords

· Secure HTTP is not used

II. Data Change Logs

For the current production server data replication policy, see the latest TRIM3 System Configuration and Technical Policies document.

A. Managing Copying Using Scripts

See separate document on the use of CGI scripts to move runs from the ASPE-TRIM server to the public server.

III. Security for Simulation Runs in TRIM3

Every TRIM3 Simulation Run has an owner, whose name is stored as CLIENT in the RUNS table of the CTD, which corresponds to a unique user name. There are two levels of access, read-only and write. This security is implemented at the database (and interface) levels.
[image: image5.wmf]AFDCNational

AFDCNational_

VisibleSimulationIDs

AFDCNational$

UpdatableSimulationIDs

Select

Select, Delete

AFDCNational_S

Update

VisibleRuns

UpdatableRuns

MetaPrivilegeEntities

MetaPrivilegeDenials

MetaPrivilege

Exceptions

Security

Visible to user

Hidden from user

Table

View

Trigger

Package

Implementation of TRIM3 Simulation Run Security

Runs to which

user has read

access

Runs to which

user has write

access

Using AFDC National Program Rules as an Example

CanWrite

GetEntity

GetEntity

A. Viewing Microdata Results

When the Simulation Engine creates a Results table, it calls Results.Security.GrantPermissions, which grants select permission on the Results table to all roles (metaprivilege entities, actually, see section D) which have permission to view results from that Simulation Run.

B. Setting the Security Policy

A security policy is the graph of certain read and write permissions between roles or individual users:

[image: image6.wmf]UI Users

HHS Users

OMB Users

Can Read

Can Write

Can Read

Can Write

Can Read

Can Read

1. UI users can read and modify all runs created by HHS and OMB users.

2. HHS and OMB users can read all runs created by UI users, but cannot modify them.

3. OMB users can neither read nor write runs created by HHS users, and vice versa.

Two tables in the CTD schema are used to define security policies such as the one above, MetaPrivilegeEntities and MetaPrivilegeDenials.

	MetaPrivilegeEntities
	

	Field
	Usage

	Name
	The name of a role or username significant for simulation-run-based security.

The MetaPrivilegeEntities defines all MySQL roles or users involved in security for simulation runs. In the example above, the table would have three items, UIUsers, HHSUsers, and OMBUsers. Permissions to read or modify all data for certain simulation runs are called metaprivileges, to distinguish them from MySQL privileges, which apply to a single database object. All TRIM3 user Ids, except for schema owners such as CTD and Results, should be granted one of these roles. Otherwise, they will have no metaprivileges on any simulation runs.

	MetaPrivilegeDenials
	

	Field
	Usage

	Owner
	The metaprivilege entity of the simulation run owner.

	Grantee
	The metaprivilege entity to which the owner wishes to deny a metaprivilege.

	Type
	The type of privilege to be denied, ‘R’ or ‘W’

The MetaPrivilegeDenials table lists denials of read and write privileges. To reduce the number of metaprivileges which must be recorded in the database, a given role has both read and write privileges by default, and any exceptions are listed in the table. The example security policy given above can also be seen as a graph of privilege denials:

[image: image7.wmf]UI Users

HHS Users

OMB Users

Deny Write

Deny Write

Deny Read

Deny Write

Deny Read

Deny Write

The MetaPrivilegeDenials table for this example would look as follows:

	Owner
	Grantee
	Type

	UIUsers
	HHSUsers
	Write

	UIUsers
	OMBUsers
	Write

	HHSUsers
	OMBUsers
	Read

	HHSUsers
	OMBUsers
	Write

	OMBUsers
	HHSUsers
	Read

	OMBUsers
	HHSUsers
	Write

There are occasions on which exceptions need to be made to the general security policy. For example, an analyst might want to grant access on one of her simulations to an analyst in another group which does not normally have access to the first analyst’s group. The MetaPrivilegeExceptions table provides a mechanism for defining such cases.

	MetaPrivilegeExceptions
	

	Field
	Usage

	Owner
	The metaprivilege entity of the simulation run owner.

	Grantee
	The metaprivilege entity to which the owner wishes to deny a metaprivilege.

	RunID
	Name of the run to which the exception applies

	Type
	The type of privilege to be granted (not denied!), ‘R’ (read-only), ‘W’ (read/write), or ‘N’ (none).

Note that when you make a change to the security policy, access to all program rules changes immediately to reflect the new policy. Access to microdata results, however, does not. This is because security for results involves MySQL table permissions, which, unlike table data, cannot be changed by triggers. To bring results permissions into line with a new security policy, either re-simulate the runs affected, or call Results.Security.GrantPermissions. The Simulation Security Manager does this for exceptions automatically.

The Simulation Security Manager, part of the TRIM3 Navigator, provides a user interface for managing the security policy and defining exceptions. This tool uses the tables above and an additional table, TrimUserGroups:

	TrimUserGroups
	

	Field
	Usage

	User_Name
	TRIM3 user name.

	Group_Name
	The metaprivilege entity to which the user belongs.

Note that due to permission restrictions on system views, this table cannot be a view referencing ALL_USERS. Thus, new TRIM3 users will not automatically be added to CTD.Trim3UserGroups.

IV. TRIM3 Server Components Outside MySQL
Each TRIM3 server is designed to be able to operate independently if necessary. All files needed for the database, simulation engine, and user interface are found on each server. This includes not only the files necessary to run the current version, but all source code and documentation as well.

A. Scheduling Backups and Maintenance Scripts

Backups and periodic database scripts are scheduled individually on each server using Windows NT’s scheduling service. CTD backups are stored in the Backups directory, usually on D: drive of a server and system backups are accessible via UI’s backup tape policy.
Backups (MySQL dumps) of the CTD are scheduled using Backups_ctd.BAT
To change the details of backup scheduling the CTD dump, edit the scheduled task. The CTD backups for the past month are stored in d:\BACKUPS (or E:\BACKUPS
B. The Simulation Engine

Files needed to run the TRIM3 simulation engine are stored in the Trim3Svr directory. These files are as follows:

	File
	Description

	TRIM.EXE
	The main simulation engine executable.

	TrimDLL.DLL
	The TRIM3 Frame DLL

	Simulation_n_n.DLL
	DLL for version n_n of the specified Simulation. This is downloaded from CTD.SIM_DLL (See I.B.) NOTE: If you update the SIM_DLL table, delete the corresponding DLLs from this directory as well. Otherwise, the simulation engine will simply use the old copy which it has already downloaded.

	Remote.EXE
	Program which allows TRIM.EXE to be started and stopped remotely.

	*.DB
	Input data temporary file. There is one such file for each input schema.

	*.DLL
	Other support files.

C. Source Code and Documentation

Source code and documentation for all parts of TRIM3 can be found in the Source directory, usually on F:. This directory is shared as \\Castor\Source. The following subdirectories are available:

	Directory
	Description

	Blevy_TrimPC
	Source code for Set Up and Run Simulations

	Diagrams
	Database and C++ class diagrams.

	Doc
	General documentation, including this document.

	IntTrim
	Source code for CPS conversion

	MultyCombo
	Source code for the Multicombo ActiveX control.

	Navigator27
	Source code for the TRIM3 Navigator, version 2.7

	
	Binary
	Navigator executables

	
	Excel
	Microsoft Excel spreadsheet templates

	
	Help
	Navigator help project

	
	Install
	Navigator installation package

	
	Quattro
	Quattro Pro templates.

	
	Setup1
	Navigator setup.exe project for installation package.

	
	SimHelp
	Help project containing descriptions of simulated programs and the TRIM3 tutorial

	
	Source
	Visual Basic source code for the Navigator

	Parse
	Source code for CPS conversion

	Pix
	Logos, icons, toolbar pictures, and other TRIM3 graphics

	Remote
	Source code for the remote simulation engine manager

	Release
	Source code for the Release and Restore program, which updates CTD.SIM_DLL, SIM_H, and SIM_CPP

	Remote
	Source code for the remote simulation engine manager

	Scripts
	SQL scripts, MySQL configuration files, and SQL*Loader control files

	
	CTD
	CTD Util, Security packages, CTD-related scripts

	
	Global
	Scripts for the data comparison utility

	
	Input
	Input data control files

	
	Miscellaneous
	Other scripts and packages

	
	OldCTD
	OldCTD Convert package, control files for old-format CTD

	
	Production
	Files needed for creating a new TRIM3 server. See Technical Deliverables and Installation Procedures.

	
	Replication/Castor
	Scripts for managing data replication on the production server

	
	Replication/WriteScr
	Visual Basic project for generating replication scripts

	
	Results
	Results Util and Security packages, control files, and results-related scripts.

	
	SQLNet
	SQL*Net configuration files for servers and clients

	
	WebInterface
	Packages for the prototype TRIM3 WWW interface

	Training
	TRIM3 training materials

	TrimEXE
	Source code for TRIM.EXE and TrimDLL.DLL

	TrimSIM
	Source code for each simulated program.

	TrimWwwHome
	HTML documents for the TRIM3 home page

Page 24

_915607173.doc
���

SimulationID = <SimID>

Simulation = Simulation

SimulationID = <SimID>

Simulation = Simulation

SimulationID

SimulationID =

Simulation = Simulation

SourceTable = <Sim>Monthly

SimulationID = <SimID>

Simulation = <Sim>

SourceTable = <Sim>

SimulationID = <SimID>

Simulation = <Sim>

SummaryTables

Col10

...

Col2

Col1

SubType

Type

TableID

SimulationID

Simulation

<SimID>Monthly

...

Term2

Term1

FamilyID

Month

PersonID

HouseholdID

<SimID>

...

Term2

Term1

FamilyID

PersonID

HouseholdID

CTD.RunDetails

CTD.Terms

_977142885

_915517471.doc
��

RunID

Runs

'Monthly'

Simulation +

Simulation OR

SourceTable =

Term = Data

Simulation

Simulation =

SimulationID

SimulationID =

Simulation = Sim

SimulationID

SimulationID =

Simulation = Sim

SimulationID

SimulationID =

Simulation = Sim

SimulationID

SimulationID =

Simulation = Sim

VarName = Term

'Input'

Simulation =

ConversionType

Value =

'ConvertType'

Enumerator =

ConversionMap

OldName

Col28

ConversionType

RangeDefault

RangeHigh

RangeLow

Scale

Length

BeginIndex

RecordType

Varname

GenClass

Year

RunDetails

CreateMicrodata

CustomTables

AlignmentTables

StateTables

DetailedTables

BasicTables

UnitType

Description

SimulationOrder

SimulationID

Simulation

RunID

Comments

Status

Type

Comment

Section

Reviewer

Time

Description

EndingHousehold

StartingHousehold

DateSimulated

Client

OutputSchema

InputSchema

'VariableList'

SourceTable =

Term = Term

Simulation = Sim

VariableList

VariableIndex

Operator

ConversionType

SourceDatabase

DataSimulationID

SourceTable

Data

Sequence

SimulationID

Term

Simulation

'State'

SourceTable =

<Sim>

Simulation =

'Array'

SourceTable =

<Sim>

Simulation =

'National'

SourceTable =

<Sim>

Simulation =

<Sim>State

...

Term2

Term1

State

SimulationID

<Sim>Array

...

Term2

Term1

Sequence

SimulationID

<Sim>National

...

Term2

Term1

SimulationID

RunID

Enumerators

Description

Label

Value

Version

Enumerator

Enumerator

Terms

TrimUniverse

MaxNumberOfValues

MaximumValue

MinimumValue

Enumerator

DataType

OldName

Description

Category

SourceTable

Term

Simulation

