10

A Practical Guide to TRIM3 Program Rules

Contents

1A Practical Guide to TRIM3 Program Rules

1Background

1Program Rules

2Adding a New Rule Definition

4Adding State and National Rules

6Making the Needed C++ Code Updates

7Adding (National) Array Rules

7Adding StateArray Rules

8Adding VariableList Rules

8Determining Category, Subcategory, and GroupName Settings

9What to do if a Table Array Size is Inadequate

10Ask for Help When Uncertain

Background

The TRIM3 micro-simulation model consists of an “engine” or “frame” of supervisory functions within which all the 20+ TRIM3 simulations function. The frame performs the low-level functions required by all simulations—e.g., reading input data from an input file, writing micro-results to the database, and controlling overall processing and cleanup—leaving programmers free to focus on the details of simulation coding. Simulations call various frame functions to control processing of households or smaller units within the simulation and to read simulation parameters (“rules”) from database tables.

The program rules that specify the features and parameters each simulation setup uses reside in four database tables that are unique to each simulation. When a user creates a new simulation setup from an existing one, the interface populates these four simulation tables—plus a fifth table that is shared by all simulations—with the required records that a user can then alter as desired to invoke features and set the parameters that are unique to each run setup.

Program Rules

TRIM3 simulations use five different types of program rules: variable list rules that may contain one or more variables, two types of national-level rules that apply to all states and two types of state-level rules that are specific to each state. The tables that hold these rules are shown below, where “xxx” is specific to the simulation. For instance, for the StateTax simulation, “xxx” would be “StateTax.” All program rule tables are a part of the “ctd” schema, which refers to the former TRIM2 “Central TRIM Directory.”
	Program Rule Type
	Contents/Usage

	Variable List
	National-level rules that contain one or more annual or monthly variables from input- or results-schema tables.

	xxxNational
	Single-dimensioned national-level rules whose value applies to households, families or persons in all states

	xxxArray
	Multi-dimensioned national-level rules whose value applies to households, families or persons in all states

	xxxState
	Single-dimensioned state-level rules; values differ by state

	xxxStateArray
	Multi-dimensioned rules state-level rules; values differ by state

For every simulation setup, the xxxNational table contains a single record, the xxxArray table contains multiple records corresponding to the maximum array size that has been established for that particular simulation, the xxxState table contains 56 records, one record for each state and territory, and the xxxStateArray table contains 56*ArraySize, where ArraySize is the maximum array size established for that particular rule type and simulation.

There is rarely a need to give the number of records in each table a great deal of thought, as the interface takes care of populating these tables with records when run setups are created. All that is necessary for the programmer to do manually in the TRIM3 database when a new rule is created is to add a new term definition to the ctd.terms table and—except for variable list program rules—to also add the new rule (a new column) to the appropriate table. If a new rule is an “enumerated” type—i.e., a categorical rule where integer values refer to various options—then the programmer must also add enumerators to the ctd.enumerator table. (However, see the section “What to do if a Table Array Size is Inadequate.”)
The following sections provide an explanation of the contents and function of the ctd.terms table and provide sample statements for adding state and national program rules using a specific StateTax provision. Later sections provide instructions for adding array and variable list program rules. Programmers may alter the SQL statements shown herein as appropriate for new rules to implement new simulation features. Brief guidance is also provided for the C++ code changes needed to implement new rules in the simulation code.
Adding a New Rule Definition
For any new rule we add, no matter what type of rule it is, we must add a record to the ctd.terms table. This table is the substance of the TRIM3 data dictionary, so it also defines all input terms and results variables that are produced by TRIM3 simulations. Thus, some fields in the table are not relevant for program rules. Two fields—Enumerator and ValueEnumerator—provide a way of linking program rules defined in the ctd.terms table with enumerators in the ctd.enumerators table. The ctd.terms table contains the following fields.
	Field
	Type
	Range
	Definition

	IsPublic
	Integer
	0-1
	Indicates whether or not non-UI users may view values. (Generally applicable only on the public server, as anyone with access to the ASPE-TRIM server should have access to all terms.)

	Simulation
	Character
	
	Name of simulation which uses a rule

	Term
	Character
	
	Name of program rule or input or results variable

	SourceTable
	Character
	
	Name of table that contains the program rule or input or results variable

	Category
	Character
	
	Major category by which terms are grouped by the interface for run setup or dictionary views

	DataType
	Character
	
	Indicates the data type of the variable--typically INT, REAL, or FLOAT for program rules

	OldName
	Character
	
	Not applicable to program rules. Contains former TRIM2 name for some input variables.

	Description
	Character
	
	Contains a term description that may also include notes and alerts to assist users and programmers in the use or understanding of the program rule or other term. PROGRAMMERS: PLEASE MAKE DESCRIPTIONS COMPLETE AND INCLUDE ALL NEEDED NOTES. Obtain any needed assistance from analysts to completely define terms.

	Enumerator
	Character
	
	Name of an enumerator to associate with array rules in one of two array tables for a given simulation

	Minimum Value
	Integer
	-9999 to 999999999
	Minimum value a user may specify for a rule (enforced by the interface). Also relevant to input terms and results variables.

	Maximum Value
	Integer
	-9999 to 999999999
	Maximum value a user may specify for a rule (enforced by the interface). Also relevant to input terms and results variables.

	Maximum Number Of Values
	Integer
	0-336 (currently)
	Maximum number of elements in either a single- or double-dimensioned program rule. TANF rule ChildOnlyPartProbAdjust is an example of a double-dimensioned (6 x 56) array with MaximumNumberOfValues = 336. Typically left undefined without consequence. May provide application safeguard.

	Trim Universe
	Character
	
	Not applicable to program rules. Defines the applicable TRIM3 universe for an input term.

	CPSName
	Character
	
	Not applicable to program rules. Provides the CPS name of a CPS input term (or ACS name of an ACS input term).

	CPS Location
	Character
	
	Not applicable to program rules. Identifies the location on a CPS input file for an input term.

	CPSUniverse
	Character
	
	Not applicable to program rules. Defines the applicable CPS universe for an input term.

	GroupName
	Character
	
	Name by which program rules are grouped for simulation setup. NOTE: All terms with the same GroupName must reside in the same table, have the same number of elements, and have the same enumerator (if any), since the interface will display them side by side. GroupName is not used for variable list rules.

	Aggregate Type
	Integer
	
	Intended to be used to indicate how to “aggregate” (or summarize) a variable when a requested extract is at a higher level than the source table (e.g. how do you aggregate the age variable when an extract is at the family level). Functional in TRIM2 but never implemented in TRIM3. May be built into the new Data Viewer at some point.

	Subcategory
	Character
	
	Used alongside Category in grouping program rules for simulation setup.

	Sequence
	Integer
	0-428 (currently)
	Indicates the sequence of array rules, with maximum sequence corresponding to the maximum established for each simulation and reflected by define statements in a simulation's header file. (If not there already, then please implement, making certain define statements and database are consistent.)

	Value Enumerator
	Character
	
	ValueEnumerator in the ctd.terms table corresponds to Enumerator in the ctd.enumerator table. (The ctd.enumerator table contains enumerators for both ctd.terms Enumerators and ValueEnumerators values.) ValueEnumerators provide code options for program rules or code definitions for input and results terms.

	Used In Simulation
	
	
	To my knowledge, not coded in recent years. May have initially been intended to identify input variable terms that are required by TRIM3 simulations.

	VersionFrom
	Integer
	0-59 (currently)
	Major version number when a program rule becomes effective. The interface won't display the rule for setups using earlier versions.

	VersionTo
	Integer
	0-101 (currently)
	Major version number when a program rule becomes obsolete. The interface won't display the rule for setups using later versions.

Adding State and National Rules
Simulating the StateTax two-earner deduction for Maryland requires two rules specific to that deduction. The MD state tax forms show that the deduction is one of the items subtracted from federal adjusted gross income (AGI) when calculating the MD state AGI. One of the TRIM3 rules, TwoEarnerCoupleDeductionType, is a state-level rule that indicates the type of two-earner deduction that is available (if any) to residents of a state. It is an array rule that contains 56 elements—one for each state or territory and DC—and it resides in the StateTaxState table. The MD option could actually be coded for any state if an analyst wanted to see what the impact on taxes would be if other states adopted the MD provision.

The TwoEarnerCoupleDeductionType rule is an “enumerated” program rule—i.e., while the StateTaxState table contains integer values for the rule, the associated descriptive labels are entered into the ctd.enumerator table. Enumerated values allow users to set integer values at the time of run setup using descriptive labels that are contained in the ctd.enumerator table rather than the integers that are associated with those labels. While the integer values are referenced by the programmers who code the simulations, those integer values would have no meaning to analysts without the descriptive labels.

The MD two-earner deduction also requires a single-dimensioned national-level rule, MaxDeductionLimit2Earner_MD to specify the deduction limit. National-level rules apply to residents of all states.
StateTax is somewhat unique in the way it defines some national-level rules. Intuitively, you might assume that a rule ending with “_MD,” which refers to a single state, would be a state-level rule. But it actually is a rule that could be implemented by any state. In a baseline simulation (which models current law), only MD would be coded in a way that implements this particular MD tax provision. However, an analyst might want to determine what the impact would be if another state or even all states implemented the same provision that prevails in MD. In that case, the rule could be implemented for any other state by setting the enumerated value equal to 1 (the MD option) and supplying a value for MaxDeductionLimit2Earner_MD (which would apply to all states).
Below are statements that add the two program rules described above to the ctd.terms table. These statements are examples that may be modified to add similar rules. The maximum deduction limit for MaxDeductionLimit2Earner_MD has arbitrarily been set to 9999 since the deduction would never exceed such a limit!
SQL Statement: insert into ctd.terms (ispublic, simulation, term, sourcetable, category, subcategory, groupname, datatype, description, versionfrom, valueenumerator, minimumvalue, maximumvalue) values (1,'StateTax', 'TwoEarnerDeductionType', 'StateTaxState', 'Filing Unit', 'Other', 'State Rules', 'INT', 'Specifies the rules to use to implement a two-earner deduction for couples',25, 'ST_TwoEarnerDeductionType',1,1);

SQL Statement: insert into ctd.terms (ispublic, simulation, term, sourcetable, category, subcategory, groupname, datatype, description, versionfrom, valueenumerator, minimumvalue, maximumvalue) values (1,'StateTax', 'MaxDeductionLimit2Earner_MD', 'StateTaxNational', 'State-specific Options', 'Other', 'MD Two-earner Deduction', 'Real',

'Specifies the limit of the two-earner deduction',25,0,9999);
The next step is to add the new rules to the appropriate StateTax tables—StateTaxState and StateTaxNational. Here are those statements:

SQL Statement: alter table StateTaxState add column 'TwoEarnerDeductionType' int default '0';
SQL Statement: alter table StateTaxNational add column 'MaxDeductionLimit2Earner_MD' float default '0';

The default for both variables is set to 0, and when the column is added, all existing records in the tables will be populated with that default for these two new columns (or “fields” or “rules”). This enables existing runs to run without error using either former or updated code even though the new rules are only effective with the latter (a feature that is controlled by the value placed in the VersionFrom field).
The default value must be set so that existing simulations produce the same results as before even when using the updated code. In this case, setting the default to 0 for TwoEarnerDeductionType means the new capability will not be used for any existing simulations unless intentionally selected by an analyst, so if existing run setups are run with updated code, they will produce the same results as they did with earlier versions of the code.
The next step is to add the enumerators for the TwoEarnerDeductionType rule to the ctd.enumerators table. Analysts sometimes show only the only enumerator(s) that will be programmed according to current specs, but the enumerators and programming may be expanded at a later time to accommodate further options. Here are the needed statements for the ctd.enumerator table needed to implement the initial specs for the two-earner deduction:

Insert into ctd.enumerator (enumerator, version, value, description)

Values ('ST_TwoEarnerDeductionType', 25, 0, ‘Not implemented’);

Insert into ctd.enumerator (enumerator, version, value, description)

Values ('ST_TwoEarnerDeductionType', 25, 1, ‘Md Rules’);

Notice that the enumerator name—ST_TwoEarnerDeductionType—matches the ValueEnumerator name used for TwoEarnerDeductionType in the ctd.terms insert statement. A value of 0, to be interpreted “Not implemented,” is provided since most states will not be implementing the MD rule (and since no setup prior to the updated version implements the rule).

Making the Needed C++ Code Updates

Beyond database updates, the other changes required to implement the MD two-earner deduction are made to the StateTax C++ code. Determine the appropriate class according to function of the rule, placing the rule in the class where it will be called. Do the following:

1) In the appropriate class, add the national rule to the ListNationalInst() function following established syntax and convention.

2) In the appropriate class, add the state rule to the ListStateInst() and MoveStateFields(int FipsStateCode) functions following established syntax and convention. The MoveStateFields function populates the state array with values from the program rule though referencing only the final subscript of the value array.
3) Declare datatype in the header file for the variable containing the national program rule value in the same class where the rule was added in the .cpp code. (See existing examples.)

4) Add a state-level array in the header file for the state program rule in the same class as the class where the rule was added in the .cpp code. (Follow existing examples.)
5) Refer to existing examples for similar existing rules to see how the rules should be referenced in the code when needed.
Adding (National) Array Rules
National array rules are single dimensioned rules whose array size varies by simulation. They are added to the xxxArray table and the ctd.terms table using statements similar to the following ones for the TANF GenderPartProbAdjust program rule.
Sql Statement: insert into terms (ispublic, simulation, term, sourcetable, category, subcategory, groupname, datatype, description, enumerator, minimumvalue, maximumvalue, versionfrom) values (1,'TANF','GenderPartProbAdjust','TANFArray','Participation Decision','Other','Array Rules', 'REAL','Adjustment to the probability of participation by gender of family head.','TANF_GenderAdj', 0,100,40);
Sql Statement: alter table tanfarray add GenderPartProbAdjust float default 0;
Incorporating the rules into the Code
· In the appropriate class, add the rules to the ListBracketInst() and MoveBracketFields() functions following established conventions.

· In the header file, add the rule array to the same class as for the statements in the .cpp code.

Adding StateArray Rules
StateArray rules are double-dimensioned rules. One dimension contains 56 elements for state, whereas the size of the second dimension varies by simulation. The rules are added to each simulation’s xxxStateArray table and the ctd.terms table using statements similar to the ones above for the GenderPartProbAdjust program rule. Of course, the appropriate xxxStateArray table would be referenced in the SQL statement that inserts the term into the ctd.terms table.

Likewise, the rules are incorporated into the code in a similar fashion using the ListBracketInst() and MoveBracketFields() functions but specifying two dimensions rather than one.
Adding VariableList Rules
VariableList rules may be null if not needed, or they may contain a single variable or multiple variables depending on how they are defined in the ctd.terms table and the TRIM3 “frame” function that is used to read the values of the variables they contain. The frame function SumOfVars() sums the values of multiple variables, whereas the functions GetFirstVar(), GetLastVar() and GetNextVar() read single variables. Refer to existing code for examples of the way these functions are used. All these frame functions are preceeded by the unique pointer that must be defined in the header file for each program rule, e.g., pRulePointer->GetFirstVar().
Rules are added to the database with a statement similar to the following one for the FamilyPovertyRatio FoodStamps rule.
SQL Statement: insert into terms (ispublic, simulation, term, sourcetable, category, subcategory, datatype, description, versionfrom) values (1, 'FoodStamps', 'FamilyPovertyRatio', 'VariableList', 'Eligibility', 'Other', 'Annual', 'Variable list program rule to contain <i>StandardPovertyRatio</i> computed by TRIM3 Poverty module.',32)

As this statement illustrates, HTML tags may be used in the ctd.terms description field. Documentation links may also be inserted.

Datatype for variable list rules should be either annual or monthly to indicate the type of input variable that is to be supplied.
No further database entries are required for variable list rules, though programmers should run the following script that is accessible via the TRIM3 interface after adding a variable list rule: TRIM3Navigator->Administration->Scripts->Add a variable list rule to existing simulations.

In the C++ code, add an entry for the variable list rule in the ListVarInst() function of the appropriate class and also define the pointer in the header file in the CvarInstPackager class.
Determining Category, Subcategory, and GroupName Settings
A good way of getting an overall sense of the organization of program rules for a particular simulation is to issue the following SQL command, substituting the name of the simulation you are working with for “Simulation.”

SQL statement: select term, category, subcategory, groupname, sourcetable from ctd.terms where simulation = 'Simulation' order by category, subcategory, groupname

For easier viewing, you may transfer the results to an Excel spreadsheet. This may provide you with sufficient information to determine how any new program rules should be categorized. Alternatively, you might ask the analyst who provides specifications how new rules should be classified. If new program rules do not fit any current classification, you may create new ones. If you do so, you may also need to enter a new record into the ctd.CategoryOrder table. If you do not know how to enter a record or how this table interacts with the ctd.terms table, you may ask the database administrator for assistance.

Remember that while the database is case insensitive, the interface is not. Thus, if you intend for the categories, subcategories, and groupnames you enter to be the same as existing ones, then be attentive to case in the SQL statements you construct.
Also remember that rules having the same GroupName must reside within the same table. If they are array rules, they must have the same number of elements, and if they are enumerated, they must use the same enumerator since they are displayed together. GroupName is not used for variable list rules.
What to do if a Table Array Size is Inadequate

If you need to add a new array rule that is too large for the existing array table for the module you are modifying, you may need to increase the array size of that table. As an example, the analyst who is primarily responsible for the PubOrSubsidizedHousing module drew up specifications for an array having 9 values that needed to be added to the PubOrSubsidizedHousingStateArray table that had a maximum Sequence of 8. The existing table had 8 records with Sequence ranging from 1 through 8 for each SimulationID, State combination. The need was for at least 9 records for every SimulationID, State combination in the table. (SimulationID, State, and Sequence is the table’s primary key, a combination that must be unique within the table.
If you encounter this situation, you should alert both the analyst who has provided the specifications and the Lead TRIM3 Programmer before taking any action. If they agree the table should be expanded, you can expand the array size by using the following script that is available on the ASPE-TRIM server: http://aspetrim.urban.org/cgi-bin/cgi_expandarrays.pl or the comparable script on the public server. Tables on both servers must be kept consistent with one another, so if you expand a table on one server, you must do the same on the other server. You can locate the script via the TRIM3 interface using this path: Navigator->Administration->Scripts.

Additionally, you will need to expand array sizes in the updated code that you are developing to correspond with the maximum Sequence in the table you have expanded. Most, if not all, simulations specify maximum array sizes in the simulation’s *.h file. As of this writing, the PubOrSubsidizedHousing.h file contains the following definitions:

#define HS_MAX_ARRAY 32

#define HS_MAX_STATEARRAY 10

The first definition defines the maximum Sequence number in the PubOrSubsidizedHousingArray table, and the second definition defines the maximum Sequence number in the PubOrSubsidizedHousingStateArray table. Updating the applicable define statement is the only code edit that is needed, assuming that all array rules defined in the code are dimensioned by the global values set by the define statements.
Two more steps are needed. Once you have expanded a table, it is expected that existing code versions will fail to execute without the same edit to the “define” statements that reflect the maximum Sequence in the table you have expanded. So, you need to retrieve, edit, re-compile in release mode, and re-release all versions of the code for the simulation with which you are working that need to be available to analysts. This includes any of the most recent versions that are needed in addition to the versions used for the past three baselines. The analyst primarily responsible for the simulation with which you are working can help identify needed versions.

The versions that are re-released should over-write the existing versions. Over-writing existing versions that have been used for production is rarely done; this is one rare exception to the rule. Take care in over-writing existing versions.
Delete the compiled *.dll for any version you are overwriting in the TRIM3 server’s d:\Trim3Svr folder. Then create a copy of the baseline setup and run it with the re-released version to ascertain it produces the same tabular results as the baseline. There is no need to check micro-results.
The final step is to set status to 0 in the ctd.sim_dll table in each server’s database for any “module” (i.e., simulation version) that has not been updated with the required edit. If an analyst requests one of those versions, it will be necessary to set that version’s status to 2 in the ctd.sim_dll table, retrieve the code, edit, recompile and re-release it.
Ask for Help When Uncertain
Analysts may or may not indicate the type of rules they specify in the specifications they provide to programmers. If you have a question about whether or not a rule is a national-level rule that will apply uniformly to residents of all states or is a state-level rule that is specific to each state, then be sure to ask the analyst or other programmer who provides specifications for the provision you are modeling. Likewise, make sure you understand whether a variable list rule will contain monthly or annual variables so that you can correctly specify the rule in the ctd.terms table and use its contents appropriately in simulation coding.

