I. A Procedure for Detecting and Removing Superfluous Looping

TANF Eligibility

For larger simulations, it is best to apply this procedure to each of the major sections of the simulation separately.  We begin with the Eligibility object of TANF.  First, we collect information about the member functions contain code that loops through all people in the unit and the functions that call these.

(1) Begin with a copy of the object header for CTANFEligible.  Examine each function for unit loops.  Indicate the number of such loops underneath the function name.  Also indicate if the current person is changed anywhere in the function.

(2) For each function with loops, indicate which functions in the object call that function.

(3) For each function with loops, indicate whether or not it is called outside the object.  If the function is only called once or if it is called frequently, indicate that.

(4) Follow the chain of calls to functions with loops backwards among the functions in the object.  Indicate these.

(5) Delete entries for functions which do not have annotations.

The result for TANFEligible is as follows:

class CTANFEligible : public CEligible

{

  BOOL IsParentsOK(int month);

  
Used outside: Yes, by Simulate

  
Calls: SetUnitType, SetUnitType2, SaveResults

  BOOL IsTeenMomOK(int month);

  
Loops: 0


Other person change: 1 (head)

  void InitializeUnit();

  
Loops: 1


Used outside: Yes, once

  int  UnitDisabilityStatus(int month);

  
Loops: 2


Called by: SaveResults

  int  GetNumChildrenUnder21NotInUnit(int month);

  
Loops: 1


Used outside: Yes, once

  int  GetNumChildrenUnder2NotInUnit(int month);

  
Loops: 1


Used outside: Yes, once

  void SetEligibleChildren();

  
Loops: 1


Used outside: Yes, once

  bool IsNewApplicant(int month);

  
Loops: 2


Called by: IsUnitType, IsEmployedButUpEligible


Used outside: Yes, VERY FREQUENT

* Has test that ensures that the loops are executed


only on the first call. *
  bool IsHeadOrSpouseOnSsi(int month);

  
Loops: 0


Other person change: 1 head, 1 spouse


Called by: IsCompType


Used outside: Yes

  bool IsHeadEligible(int month);

  
Loops: 0


Other person change: 1 head


Called by: No one.  UNUSED.

  bool IsAnyHouseholdMember60OrOlder();

  
Loops: 1


Use outside: Yes, once

  bool IsAnyHouseholdMemberDisabled(int month);

  
Loops: 1


Used outside: Yes, once

  bool IsAnyEligUnitMember60OrOlder(int month);

  
Loops: 1


Used outside: Yes, once

  bool AnyIndicationOfReceiptByUnit();

    
Loops: 1


Used outside: Yes, once

  bool IsUnitType(int type,int month);

  
Loops: 0


Other person change: 1 (Head)


Called by: IsCompType


Used outside: Yes, frequent


Calls: IsNewApplicant

  bool IsCompType(int type,int month);

  
Loops: 2


Other person change: *Unnecessary SetPerson*


Used outside: Yes, twice


Calls: IsHeadOrSpouseOnSsi, IsUnitType

  void SaveResults(int month);

  
Loops: 1


Other person change: 1 head, 2 other


Called by: IsParentsOK


Calls: UnitDisabilityStatus

  void SaveAnnualResults();

  
Loops: 2


Other person change: 1 head


Used outside: Yes, once

  void ResetAsChildOnlyDueToTimeLimit(int month);

  
Loops: 1


Calls: SetChildOnlyUnitType


Used outside: Yes, once

  void SetUnitType(int month);

  
Loops: 0


Other person change: 2 head, 1 spouse


Called by: IsParentsOK


Calls: SetHeadEligibility, SetSpouseEligibility, SetEssentialPersonEligibility, IsThereAUpProgram, SetYoungestChildNum, SetOldestChildNum, IsEmployedButUpEligible

  void SetUnitType2(int month);


Called by: IsParentsOK


Calls: SetChildOnlyUnitType, AreBothParentsInUnit

  void SetChildOnlyUnitType(int month, bool TimeLimit);

  
Loops: 1


Other person change: 1 head


Called by: SetUnitType2, ResetAsChildOnlyDueToTimeLimit

  bool AreBothParentsInUnit(int month);

  
Loops: 1


Called by: SetUnitType2

  void SetHeadEligibility(int month);

  
Loops: 1


Other person change: 1 head


Called by: SetUnitType

  void SetSpouseEligibility(int month);

  
Loops: 1


Other person change: 1 spouse


Called by: SetUnitType

  void SetEssentialPersonEligibility(int month);

  
Loops: 1


Called by: SetUnitType

  BOOL IsThereAUpProgram(int month);

  
Loops: 2


Called by: SetUnitType

  BOOL IsEmployedButUpEligible(int month);

  
Called by: SetUnitType

  
Calls: IsNewApplicant

  void  SetYoungestChildNum(int month);

  
Loops: 1


Called by: SetUnitType

  void  SetOldestChildNum(int month);

  
Loops: 2


Called by: SetUnitType

};
From this, we see two things that can be eliminated:

· Delete IsHeadEligible.

· Delete the unnecessary SetPerson from IsCompType.

We can then display this information as a graph:

[image: image1.png]SetSpouseEligibility

SetHeadEligibility

SetEssentialPersonEligibility

) IsEmployedButUpEligible
SetYoungestCHIANIN i ¥

UnitDisabilityStatus1

SetOldest ChildNum1

SetOldest Chil dNum2

IsThereAUpPrograml UnitDisabilityStatus2

SaveResults

SetChil dOnlyUsffType

SetUnitType2

IsThereAUpProgran2
AreBothParentsnUnit





Eleven functions with loops are called only outside the object.
There is an oval for each loop in the object.  Functions in the object that call loop functions are in squares.  A yellow background means that the function is called outside the object; a red background means that it is frequently called outside the object.  Functions that are called once outside the object are omitted.

The solid arrows show the chain of function calls within the object.  Red arrows between loops mean that one must come before the other.  This is the only information in the graph that does not come from the file above.  You will need to examine the loops yourself to determine these dependencies.  For this object, there are no loop dependencies except those in functions with multiple loops.  

Unfortunately, there is virtually no inline code documentation in TRIM.  To check for dependencies, you must study the code.
Recommendation:  A documentation convention for functions should be adopted.  At the very least, this should include preconditions—what the function depends on—and postconditions—what the function changes.  This makes determining dependencies much easier, particularly for those who have to change a simulation that they did not write.  It would be worth it to go back and document existing code in this way.
Back to the graph.  Some things to look for:

· We should focus on the functions that call the most loops, particularly those whose calls ‘fan out’ to many loops at the same level (See SetUnitType).

· Also, look closely at functions frequently called from outside the object.  Ideally, such functions should have no loops.

· Look for functions with loops that are called only outside the object.  Can these be combined into a single loop that sets variables that are accessed by the outside calls?

· Look at complicated call structures, particularly subgraphs which fail to be trees.  These indicate places where the program flow could probably be streamlined.

Analyzing the graph above, we see two changes that would greatly improve efficiency:

· Collapse the eight loops triggered by SetUnitType into two.

· Seven functions with loops can be computed with a single loop:  GetNumChildrenUnder21NotInUnit, GetNumChildrenUnder2NotInUnit, SetEligibleChildren, IsAnyHouseholdMember60OrOlder, IsAnyHouseholdMemberDisabled, IsAnyEligUnitMember60OrOlder, AnyIndicationOfReceiptByUnit.  Further, this loop can be located in SetUnitType.
· Functions with multiple loops can be made more efficient.  See Eliminating Multiple Loops In One Function below.
Note that IsNewApplicant is called very frequently.  However, examining the code, the loops are only executed on the first call, so this is not a problem.

Also, some things of lesser importance:

· The IsNewApplicant loops could also be brought into SetUnitType.

· The looping of IsCompType only needs to be done once.  It is called twice outside TANFEligibility.

· The triangle between UnitDisabilityStatus, IsParentsOK, and SaveResults can probably be streamlined.

· Many of the standalone functions with loops that are called once outside the unit (omitted from the graph) could be combined.

Hence, if we implement only the major (underlined) changes in the eligibility object, we save twelve loops per unit per month.

Graph Software

A word on producing such graphs.  I use graphviz, which is Open Source software developed by AT&T labs.  They use it for analyzing their networks.  Graphs may be defined using a simple text language.  For example, the graph above is produced by the following code:
digraph TANFEligBefore {


root = SetUnitType;


overlap = false;


node [shape=box, style=filled, color=red];


IsUnitType;


node [shape=box, style=filled, color=yellow];


IsParentsOK;


IsHeadOrSpouseOnSsi;


node [shape=box, style=filled, color=gray];


SetUnitType;


SetUnitType2;


IsEmployedButUpEligible;


node [shape=oval, style=filled, color=yellow];


ResetAsChildOnlyDueToTimeLimit;


node [shape=oval, style=filled, color=gray];


SaveResults;


SetChildOnlyUnitType;


AreBothParentsInUnit;


SetHeadEligibility;


SetSpouseEligibility;


SetEssentialPersonEligibility;


SetYoungestChildNum;


subgraph cluster_SetOldestChildNum{



rank=same;



node [shape=oval, style=filled, color=gray];



SetOldestChildNum1 -> SetOldestChildNum2 [color=red, style=bold];


}


subgraph cluster_IsThereAUpProgram{



rank=same;



node [shape=oval, style=filled, color=gray];



IsThereAUpProgram1 -> IsThereAUpProgram2 [color=red, style=bold];


}


subgraph cluster_IsCompType{



rank=same;



node [shape=oval, style=filled, color=yellow];



IsCompType1 -> IsCompType2 [color=red, style=bold];


}


subgraph cluster_IsNewApplicant{



rank=same;



node [shape=oval, style=filled, color=red];



IsNewApplicant1 -> IsNewApplicant2 [color=red, style=bold];


}


subgraph cluster_UnitDisabilityStatus{



rank=same;



node [shape=oval, style=filled, color=gray];



UnitDisabilityStatus1 -> UnitDisabilityStatus2 [color=red, style=bold];


}


SaveResults -> UnitDisabilityStatus1;



IsUnitType -> IsNewApplicant1;


IsEmployedButUpEligible -> IsNewApplicant1;


IsCompType1 -> IsHeadOrSpouseOnSsi;


IsCompType1 -> IsUnitType;


IsParentsOK -> UnitDisabilityStatus1;


IsParentsOK -> SetUnitType;


IsParentsOK ->SetUnitType2;


IsParentsOK ->SaveResults;


SetUnitType2 -> SetChildOnlyUnitType;


ResetAsChildOnlyDueToTimeLimit -> SetChildOnlyUnitType;


SetUnitType2 -> AreBothParentsInUnit;


SetUnitType ->SetHeadEligibility;


SetUnitType ->SetSpouseEligibility;


SetUnitType ->SetEssentialPersonEligibility;


SetUnitType ->IsThereAUpProgram1;


SetUnitType ->IsEmployedButUpEligible;


SetUnitType ->SetYoungestChildNum;


SetUnitType ->SetOldestChildNum1;

}
The software also comes with some interfaces, but I find it simpler to use the language.  

TANF Assets
There is only one function in this object with a unit loop, and this unit is executed only once per unit per month.  However, the objects TANFVehicles and TANFLumpSum are also called in this section, and so should be considered as a single unit with TANFAssets.  TANFLumpSum is also called by TANFIncome, but all looping computations can be done at the time of the assets test.
class CTANFAssets : public CAssets

{

  BOOL IsOK(int month);

Calls: SetAssetsOfUnit, TANFVehicles::TotalNonexemptValue, TANFLumpSum::GetAmountToCountAsAssets
  void  SetAssetsOfUnit(int month);

Loops: 1


Called by: IsOK
};

class CTANFVehicles : public CInstSet, public CResultType

{


float
TotalNonexemptValue(int month);



Calls: GetVehicles

void
GetVehicles();


Loops: 1



Called by: TotalNonexemptValue

void
SortVehicles();


* Not a very efficient sort routine. *

void
SaveResults();


Loops: 1
};

class CTANFLumpSum : public CInstSet

{


void  InitializeUnit();


Loops: 1



Called outside: Yes, once

float GetAmountToCountAsAssets(int month);


Calls: LumpSumIncomeOfUnit



Called by: TANFAssets::IsOK


float GetAmountToCountAsIncome(int month);


Calls: LumpSumIncomeofUnit



Called outside: Yes

void  SetAdditionalIneligMonths(int month,float NetIncome,float NetLimit);


Loops: 1

Calls: LumpSumIncomeOfUnit

Called outside: Yes, once 

int   GetAdditionalIneligMonths(int month);


int GetTreatment();


float LumpSumIncomeOfUnit(int month);



Loops: 3


* Has test ensuring that looping only occurs on first call



Called by: GetAmountToCountAsAssets, GetAmountToCountAsIncome, SetAdditionalIneligMonths.
};

We could combine the GetVehicles loop with the SetAssetsOfUnit loop, but the effort involved outweighs the time savings.  There are some things in TANFVehicles that could be more efficient, such as the sort routine, but unless there are large numbers of units with large numbers of vehicles, it is not worth changing these.
Likewise, it would be possible to combine the looping of LumpSumIncomeOfUnit with SetAssetsOfUnit, but probably not worth it.

Do you really need all the circularity checks?  There are at least seven loops in TANF that do nothing but set IN_PROCESS values, such as the first loop in LumpSumIncomeOfUnit.  They may be a useful check in debugging, but they are not needed in production.  Enclose these loops in precompiler statements that execute them only in debug mode.
Also, eliminate one loop from LumpSumIncomeOfUnit.  See Eliminating Multiple Loops from a Single Function below.
TANF Income

class CTANFIncome : public CIncome

{  

[1]  void  InitializeUnit();

Loops: 1


Called outside: Yes, once


Calls: SetFamilyIncome

[2]  float GetEarnedIncomeOfAdultsInUnit (int month);

Loops: 1


* Loop on first call only


Called by: IsJanuaryAndHaveHighEarnings, GetEarningsDisregard, IsUnitEligForNewEarnerDis, StartOfThisEarningSpell, SetEarnedAndUnearnedIncomeOfUnit


Called outside: Yes, including by eligibility.

[3]  float GetSelfEmpIncomeOfAdultsInUnit (int month);

Loops: 1


Called by: GetEarningsDisregard

[4]  BOOL  IsGrossOK(int month);

Loops: 1


Called outside: Yes, once (Simulate)


Calls: SetUnitCSIncomeVars, SetEarnedAndUnearnedIncomeOfUnit, SetIncomeDeemedToUnit, SetGrossIncomeOfUnit
[5]  BOOL  IsNetOK(int month);

Loops: 1

Called outside: Yes, once (Simulate)


Calls: SetNetIncomeOfUnit

[6]  void  SetIncomeForBenefits(int month);

Loops: 1
Called outside: Yes, once (Simulate)


Calls: GetChildCareExpenseDeductionOfUnit, GetWorkRelatedExpenseDeductionOfUnit, GetEarningsDisregard
[7] void  SaveIncomeGapResults(int month);

Loops: 1

Called outside: Yes, once (Simulate)

[8]  void  SetFamilyIncome();


Loops: 2



Called by: InitializeUnit

 [9]   void SetUnitCSIncomeVars(int month);


Loops: 2



Called by: IsGrossOK



Calls: WriteUnitCSIncomeVars
[10]    void WriteUnitCSIncomeVars(int month);


Loops: 1



Called by: SetUnitCSIncomeVars

 [11]   void SetUnitCSTransferVars(int month);


Loops: 1



Called outside: Once

[12]    void WriteUnitCSTransferVars(int month);


Loops: 1



Called outside: Once, immediately after SetUnit…

[13]    void WriteCSTransferVarsToChild(int month);    


Loops: 1


Called outside: Once, immediately after SetUnit…

 [14]   void WriteUnitCSReporterTypeVar(int month);


Loops: 1



Called outside: Once, immediately after SetUnit…
[15]  void  SetEarnedAndUnearnedIncomeOfUnit(int month);


Loops: 1


Calls: GetEarnedIncomeOfAdultsInUnit


Called by: IsGrossOK

[16]    void  SetGrossIncomeOfUnit(int month);


Calls: GetChildCareExpenseDeductionOfUnit, GetEarningsDisregard


Called by: IsGrossOK

[17]
void  SetNetIncomeOfUnit(int month);


Calls: GetChildCareExpenseDeductionOfUnit, 
GetWorkRelatedExpenseDeductionOfUnit, GetEarningsDisregard


Called by: IsNetOK

[18]  void  SetIncomeDeemedToUnit(int month);


Loops: 1



Called by: IsGrossOK



Calls: IsSubjectToGrandparentDeeming, SetIncomeDeemedFromGrandparents
[19]
bool  IsSubjectToGrandparentDeeming(int month);


Loops: 1



Called by: SetIncomeDeemedToUnit

[20]
void  SetIncomeDeemedFromGrandparents(int month);


Loops: 1 household, 1 unit



Called by: SetIncomeDeemedToUnit



Calls: GetGparentWorkExpDed, GetGparentAllocUsingAvgMethod
[21]  float GetGparentWorkExpDed(int month,int UnitNumOfUnitBeingDeemedTo);


Loops: 1 household



Called by: SetIncomeDeemedFromGrandparents

[22]  float GetGparentAllocUsingAvgMethod(int month,


Loops: 1 household



Called by: SetIncomeDeemedFromGrandparents
[23]  float GetChildCareExpenseDeductionOfUnit(int month);


Loops: 1



Called by: SetGrossIncomeOfUnit, SetNetIncomeOfUnit, SetIncomeForBenefits, GetEarningsDisregard
[24]  float GetWorkRelatedExpenseDeductionOfUnit(int month);


Loops: 1



Called by: SetNetIncomeOfUnit, SetIncomeForBenefits, GetEarningsDisregard

[25]  bool IsJanuaryAndHaveHighEarnings(int month);


Calls: GetEarnedIncomeOfAdultsInUnit


Called by: GetEarningsDisregard

[26]  float GetEarningsDisregard(int month,int DisregardFor,int *pMoreInfo=NULL);



Calls: GetEarnedIncomeOfAdultsInUnit, GetSelfEmpIncomeOfAdultsInUnit, GetChildCareExpenseDeductionOfUnit, GetWorkRelatedExpenseDeductionOfUnit, GetMonthsUsedEarningsDisregard, IsJanuaryAndHaveHighEarnings, IsUnitEligForNewEarnerDis


Called by: SetGrossIncomeOfUnit, SetNetIncomeOfUnit, SetIncomeForBenefits

[27]  int   GetMonthsUsedEarningsDisregard(int month);


Loops: 1



* Loop only on first call *



Called by: GetEarningsDisregard

[28]  int
StartOfThisEarningSpell(int month, int MinHoursPerWeek);


Calls: GetEarnedIncomeOfAdultsInUnit

[29]  bool
IsUnitEligForNewEarnerDis(int month,int HoursPerWeek, 


  int MaxMonthsSinceTANF, int MaxMonthsAllowed);



Calls: GetEarnedIncomeOfAdultsInUnit


Called by: GetEarningsDisregard
};

[image: image2.png]



New graph conventions: Blue means that there is a test in the code that ensures that the looping is done only on the first call.  Orange means that there is a household loop.

Strongly-recommended code changes:

· SetUnitCSTransferVars, WriteUnitCSTransferVars, WriteCSTransferVarsToChild, and WriteUnitCSReporterTypeVar should be combined into a single loop. Savings: 3

· The household loops in SetIncomeDeemedFromGrandparents, GetGparentWorkExpDed, and GetGparentAllocusingAvgMethod can be combined.  Savings: 2 household loops.

· The second loop of SetUnitCSIncomeVars and the loop of WriteUnitCSIncomeVars simply record summary variables.  These can be eliminated (See Eliminating Multiple Loops in One Function below).  The same with the second loop of SetFamilyIncome.  Savings: 3

· Combine the first loop of SetUnitCSIncomeVars with SetEarnedAndUnearnedIncomeOfUnit and IsSubjectToGrandparentDeeming.  Savings: 3

· A single loop can be used to combine the looping of GetSelfEmpIncomeOfAdultsInUnit, GetMonthsUsedEarningsDisregard, GetEarnedIncomeOfAdultsInUnit, GetChildCareExpenseDeductionOfUnit, and GetWorkRelatedExpenseDeductionOfUnit.  Existing functions can call this new loop function if the variables are not set.  Savings: 10

Further consolidation is possible, but I believe that it would make the code more difficult to follow.  It is not worth doing so to save two or three loops.

Total savings: 19 unit loops and 2 household loops.  With these changes, the graph would look as follows:

[image: image3.png]



TANF Benefits

The only looping in this object is in saving results.  There is nothing to change here.

TANF Participation

class CTANFParticipate : public CParticipate

{

[1]  void  InitializeUnit();

Calls: SetInitialValuesOfRandomNumberPartAligned, 

SetRandomNumbersForCorrectResponse

Used outside: Yes, once

[2]  void SetDecision(int month);

Calls: SetParticipationProbability

Used outside: Yes, once
 [3] void SetParticipationProbability(int month);

Loops: 1


Called by: SetDecision [2]
 [4] void SetRandomNumberForDecision(int month);

Calls: SetRandomNumberPartAligned

Called by: SetDecision [2]

 [5] void SetInitialValuesOfRandomNumberPartAligned();

Loops: 2


Called by: InitializeUnit [1]
 [6] void SetRandomNumberPartAligned(int month);

Loops: 1


Called by: SetRandomNumberForDecision [4]

[7]  void SetRandomNumbersForCorrectResponse();

Loops: 2


Called by: InitializeUnit [1]

[8]  double GetCorrectResponderProbability(int month);

Loops: 1


Called by: IsCorrectResponder [9]

 [9]   BOOL IsCorrectResponder(int month);

Calls: GetCorrectResponderProbability

Called by: SetRandomNumberPartAligned [6]

};    

[image: image4.png]



Recommendations:

· Consolidate SetInitialValuesOfRandomNumberPartAligned and SetRandomNumbersForCorrectResponse loops.  Eliminate the second loop that records summary variables as described below.  Savings: 3

Some of other loops could be consolidated, but this would require significant restructuring of the code, so it is not worth it.

TANF Reporter

class CTANFReporter : public CInstSet

{

    int GetNumberOfMonthsReportingTANF();

Loops: 1


Used outside: TANFUnit::SaveResults


Calls: IsReporterUnit
    float GetAmountOfTANFReported();

Loops: 1


Used outside: TANFUnit::SaveResults


Calls: IsReporterUnit
    bool IsReporter();

    bool IsReporterUnit();

Loops: 1


Called by: GetNumberOfMonthsReportingTANF, GetAmountOfTANFReported, SetIsReporterThisMonth


Used outside: Yes, once
    void SetIsReporterThisMonth(BOOL IsReporterThisMonth[12]);

Calls: IsReporterUnit


Used outside: Yes, participation
    void AssignReporterStatusToMonthsWithLowestIncome

* Change to current person that does not get reset!

};

Recommendations:

· Consolidate GetNumberOfMonthsReportingTANF and GetAmountOfTANFReported.  Savings: 1

· Add a switch and an object variable so that the loop of IsReporterUnit only happens on the first call.  See any of the functions above indicated in blue on the graph.  Savings: 3
· AssignReporterStatusToMonthsWithLowestIncome moves to the first person in the unit, but does not restore the current person at the end.  You might want to take a closer look.
TANF Prior Year

class CTANFPriorYear : public CInstSet

{


void  InitializeUnit();


Loops: 1

int   UnitRecipientStatus();


Loops: 2



* In-process loop



Used outside: Once


int   UnitMonthsOnTANFAsUP();


Loops: 2



* In-process loop



* Loops only on first call



Called by: UnitMonthsUsedEarningsDis, UnitRecipientStatus,



Used outside: Yes


int   UnitMonthsUsedEarningDis();


Loops: 3



* In-process loop



* Loops only on first call



Used outside: Once
};

Recommendations:

· The three loops that set IN_PROCESS flags should be enclosed in preprocessor statements that will cause them to be executed only in debug mode.  Savings: 3

How Loops Should Be Combined

Many of the changes above involve combining computations of several different variables, each of which requires a unit loop.  The reason why they were separate to begin with is that it made the code easier to follow conceptually.  We need to combine them in such a way that efficiency is increased without making the code less comprehensible.
First Method: Inline Comments

Let’s consider the simplest possibility first.  The code that computes each variable naturally divides into three pieces: what happens before the loop, what happens for each person during the loop, and what happens after the loop.  Say we wanted to combine the computations of FirstVariable and SecondVariable.  We could keep the corresponding parts of the two variables separate by comments:
// Pre-loop for FirstVariable

…

// Pre-loop for SecondVariable

…

int CurrentPerson = pUnit->GetPersonNum();

    pUnit->GetFirstPerson();

    do {


// Compute FirstVariable

…

// Compute SecondVariable

…

    } while (pUnit->GetNextPerson());

// Post-loop for FirstVariable
…

// Post-loop for SecondVariable

…

If you are combining two or three conceptually-related variables, this may not be a bad thing to do.  Otherwise, the code definitely becomes harder to read.

Second Method: Variable Objects

A better thing to do is this:  Create an object for each variable with three methods: PreLoop, InLoop, and PostLoop.  You can have one template object from which objects for all variables are derived.  Place the code before the loop in the function that currently computes the variable into PreLoop, the code inside the loop into InLoop, etc.  You may need to change a pointer reference or two, but otherwise the code should be unchanged.  All the code related to a variable is in one convenient place, but all are computed in a single loop:

pVariable1->PreLoop();

pVariable2->PreLoop();

int CurrentPerson = pUnit->GetPersonNum();

    pUnit->GetFirstPerson();

    do {

pVariable1->InLoop();

pVariable2->InLoop();

    } while (pUnit->GetNextPerson());

pVariable1->PostLoop();

pVariable2->PostLoop();

There are more sophisticated ways in which this can be done, but for TRIM, simpler has nearly always proven to be better.
Here is a class from which these variable objects can be inherited:

Template <class T>

class AFX_EXT_API CLoopVariable

{

public:                                 

  CLoopVariable (CSSim *pInSim, 


       CHousehold *pInHouse,

CInstSet *pInParent) {


pSim = pInSim;


pHousehold = pInHouse;


pParent = pInParent;


pUnit = pParent->pUnit;


month = 0;

  };

  virtual ~CLoopVariable() {};

  virtual void PreLoop();

  virtual void InLoop();

  virtual void PostLoop();

  void SetMonth(int ThisMonth) { month = ThisMonth );

protected:

  CSSim *pSim;

  CHousehold *pHousehold;

  CUnit *pUnit;

  T *pParent;

  int month;

private:

};  

Suppose you wanted to compute the loop variables SetHeadEligibility and SetYoungestChildNum in CTANFEligible.  Begin by creating variable objects:

class CSetHeadEligibility : CLoopVariable {

public: 

void PreLoop() {


bReason1 = FALSE;


bReason2 = FALSE;


bReason3 = FALSE;


iReasonTemp = 0;


pUnit->SetPerson(pUnit->GetHeadNum());


pParent->TANFResult->PersonType[month] = TANF_ELIGIBLE_HEAD_OF_UNIT;


if (!pSim->pCitizenship->IsOK(IsDisabled(month,2),pSim->pReporter->IsReporter())) {



pParent->TANFResult->PersonType[month] = TANF_INELIGIBLE_MEMBER_OF_UNIT;



bReason1 = TRUE;


}


if (IsOnSsi(month)) {



pParent->TANFResult->PersonType[month] = TANF_INELIGIBLE_MEMBER_OF_UNIT;



bReason2 = TRUE;


}


if (pSim->pCaretakerRelative->IsCaretakerRelativeUnit(month)) {



if (pSim->pCaretakerRelative->IsHeadExcluded(month)) {




pParent->TANFResult->PersonType[month] = TANF_INELIGIBLE_MEMBER_OF_UNIT;




bReason3 = TRUE;



}


}


if (pParent->TANFResult->PersonType[month] != TANF_INELIGIBLE_MEMBER_OF_UNIT) {



pParent->NumberOfEligiblePersons[month]++;


}

}

void InLoop() {



if ((!bReason1) && (!bReason2) && (!bReason3))




pParent->TANFResult->HeadExcluded[month] = iReasonTemp;



if ((bReason1) && (!bReason2) && (!bReason3))




pParent->TANFResult->HeadExcluded[month] = 1;



if ((!bReason1) && (bReason2) && (!bReason3))




pParent->TANFResult->HeadExcluded[month] = 2;



if ((!bReason1) && (!bReason2) && (bReason3))




pParent->TANFResult->HeadExcluded[month] = 3;



if ((bReason1) && (bReason2) && (!bReason3))




pParent->TANFResult->HeadExcluded[month] = 4;



if ((bReason1) && (!bReason2) && (bReason3))




pParent->TANFResult->HeadExcluded[month] = 5;



if ((!bReason1) && (bReason2) && (bReason3))




pParent->TANFResult->HeadExcluded[month] = 6;



if ((bReason1) && (bReason2) && (bReason3))




pParent->TANFResult->HeadExcluded[month] = 7;

}

void PostLoop() {

}

private:

BOOL
bReason1, bReason2, bReason3;

int
iReasonTemp;

}

class SetYoungestChildNum : CLoopVariable {

public:

void PreLoop() {
  YoungestAge = 99;

}

void InLoop() {

if ((pParent->TANFResult->PersonType[month] == TANF_ELIGIBLE_CHILD_IN_UNIT) ||



(pParent->IsEligUnitWithAllSsiChildren[month] &&



 pParent->TANFResult->IsSsiChildButOtherwiseElig[month])) {


  int PersonNum = pUnit->GetPersonNum();


  if (pHousehold->Person->Age < YoungestAge &&



  !(pHousehold->Person->Age == 0 &&



    pHousehold->Person->EconomicAdult)) {



  YoungestAge = pHousehold->Person->Age;



  pParent->YoungestChildNum[month] = PersonNum;


  }

}

void PostLoop() {


if (pParent->YoungestChildNum[month] == -1) {



pHousehold->Error =
"No youngest child";



AfxThrowUserException();


}

}

private:

int YoungestAge;

}

The code in gray is taken from the existing functions.  Note that no changes are necessary aside from some pParent pointers.

Now declare the variable objects in the header of CTANFEligible:

class CTANFEligible : public CEligible

{

…

CSetHeadEligibility<CTANFEligible> SetHeadEligibility;

CSetYoungestChildNum<CTANFEligible> SetYoungestChildNum;

…
}

Finally, in the routine that computes SetHeadEligibility:
void CTANFEligible::SetUnitType(int month) {

…

SetHeadEligibility.SetMonth(month);


SetYoungestChildNum.SetMonth(month);

SetHeadEligibility.PreLoop();
SetYoungestChildNum.PreLoop();

pUnit->GetFirstPerson();


do


{



SetHeadEligibility.InLoop();


SetYoungestChildNum.InLoop();
} while (pUnit->GetNextPerson());

SetHeadEligibility.PostLoop();
SetYoungestChildNum.PostLoop();
…

}

Eliminating Multiple Loops in One Function

All of the functions above which have more than one loop need them for this reason:  The first loop computes a summary whose value is then saved to all people in the unit using the second loop.  This second loop can be eliminated by code such as the following.
for (int i=0; i < pHousehold->Person.ArraySize; i++) {

    if (UnitNum == UnitArray [i]) {


pHousehold->pExcecutingResultSet->Result[i]->Variable = value;
    }

}

  The number of loops this would save per unit per month:

	TANFEligible
	6

	TANFVehicle
	1

	TANFIncome
	3

	TANFParticipation
	1


Eliminating Other Types of Loops

If you need a loop that only needs to read input variables and to read or write result variables, you can replace standard looping with a much more efficient loop.  To access input variables for all persons in the current household, e.g., grandparent deeming in TANF assets, you may use the following:

for (int i=0; i < pHousehold->HouseholdNumberofPersons; i++) {

      if (pHousehold->Person[i]->IsHouseholder()
&& (pHousehold->Person[i]->Age >= 18)) {

…

      }

}

You can use any other input object in place of Person, or use pExcecutingResultSet->Result in place of Person to read or set result variables.  See the previous section for an example.
To loop through all persons in the unit, you need to add a test:
First, add a new public function to CUnit:

Public:

BOOL IsInUnit(int i) {


return (UnitNum == UnitArray[i]);

}

Then, define loops as follows.

for (int i=0; i < pHousehold->HouseholdNumberofPersons; i++) {

    if (pUnit->IsInUnit(i)) {

…

    }

}

Note that these loops do not change the current person, so do not call other simulation functions in such loops.

Such loops could further reduce the number of loops in TANF, but they have not been included in the analysis above.

The Bottom Line
Even without going beyond the assets test, we have identified changes that will result in significant reductions in processing.  If we implement only the underlined changes above and the elimination of summary loops explained in the previous section, we eliminate 55 unit loops per unit per month and two household loops per unit per month.  That should lead to an improvement in speed that users will notice.  Further, none of these changes will require any major change to the current design of the code.
II. Other Simulation Code Recommendations

In-Line Documentation

A documentation convention for functions should be adopted in order for code maintainers—particularly those modifying code they did not write—to know what functions a given function depends on.  As noted above, this is virtually nonexistent in TRIM.  At the very least, this should include preconditions—what the function depends on—and postconditions—what the function changes.  It would be worth it to go back and document existing code in this way.

Sequential Execution of Major Objects

One thing that makes TANF code particularly hard to follow is that, for example, while all code that makes computations related to income is in the CTANFIncome object, these functions are executed at various times during the simulation by three or four other objects.  There are cases when different functions in the same major object must be executed at different times, but for the most part, this can be avoided.  As much as possible, simulation execution should follow this pattern:
· All computations related to a concept such as income are contained in a single object or set of related objects and are done at one stage in the simulation.  Functions from other objects then reference resulting variables.

· Exceptions to this need to be documented in the code.

It is not practical to apply this to existing simulation code, since it would require rewriting large sections of existing code.

Replacing Sections

Several simulations use a series of variable packaging functions called Sections (sections.h, sections.cpp).  These were intended to simplify the writing of simulation code, but have proven to be very cumbersome.  Also, they are extremely inefficient.  Each section corresponds to a single variable and has its own loop, so it is the worst possible violation of the loop reduction procedure described above.  Sections should not be used for any new simulations, and existing simulations using sections should be converted.  This can be done incrementally as modifications to those simulations need to be made.  

Variable Sections:  Most sections encapsulate the computations needed for a single variable.  If you have several sections of the same type that do not depend on each other, you can replace them with the variable loop objects described above in How Loops Should Be Combined.  Create a variable object corresponding to each section and call them in a single loop.
Table Sections:  Not only are these cumbersome, but they are notorious for giving unexpected results.  If you need to modify a table written in sections, rewrite it using a standard summary table object.

Recommended Frame Changes
1. Efficient Pointer Arrays

Input and results data are stored in instances of the MFC class CPtrArray.  The advantage of this class over a standard array is that it can shrink and grow dynamically.  However, we do not add or remove people in the midst of simulations, so this capability is useless for TRIM.  We are left with the disadvantages: More overhead in accessing data in the array and a history of memory leaks.  The use of this class is the main reason why unit or household loops slow down processing so much.  It can be replaced by a standard C++ array of pointers.  This would not be difficult, but would need to be tested thoroughly.

This change alone could lead to a noticeable improvement in the performance of all simulations.
Implemetation Details:  In CIter, replace CPtrArray RecArray with an actual array of pointers.  The maximum length may be taken as 20.  Rewrite the member functions to use this array.  Several member functions, such as GrowArray and RemoveArray are not used anywhere.  Add a member function Append, which takes a pointer as an argument and adds it to the end of the array.
In CHousehold::InitIters and CHousehold::VarFetchFirst, remove all calls to RecArray.SetSize and replace calls to SetAt with calls to Append.  The argument i for SetAt is not needed.  

No other code changes should be needed.

The member function RemoveArray is called in match.cpp, but this file is not currently included in the frame projects and can be ignored.

2. Standardize Database Access, Use Native MySQL
Database access is currently through ODBC, and is done in several different ways.  Some parts use the GenSet class, while other parts are done through classes derived from CRecordset.  In the latter category are CVarTableSet, CRunSet, CResultSet, CResultMonthlySet, CBaseInstSet, CDataSet, and CTableSet.  Also, several different versions of GenSet are used in various TRIM projects.

It would be best to standardize these and use a native MySQL C++ interface rather than the MFC interface to ODBC.

· Change CGenSet to use the MySQL C API distributed with MySQL.

· Create a class mimicking the methods of CRecordset used in TRIM that implements them using the MySQL C API.  Use this to derive classes.

· See #4 below.

· The writing of results may be substantially faster.

Which MySQL Interface?  There are a number of interface choices for MySQL outside standard database interfaces: the MySQL C interface, MySQL++, Connect/ODBC, or Connect/Net.  We are interested in optimal performance for very large queries.  We need a low-level interface with access to special MySQL options such as unbuffered queries, so the MySQL Connect interfaces are not the best choices.  MySQL++ is no longer distributed by MySQL AB, but by a single developer not connected with the company.  I have tested previous versions of MySQL++; they were even slower than the standard ODBC interface.  This leaves the MySQL C interface that comes with MySQL.  This is based on libmysqld, and has access to all of the low-level options we need.  We will have to wrap a basic C++ interface around it, but that is not difficult.
3. Eliminate Make Files

To speed up simulations, the frame currently caches all input data in files and reads the cache rather than accessing the database directly.  With the original database configuration of ODBC and SQL-Server or Oracle, this was a necessity, since retrieving data from the full input data query was unacceptably slow.  However, the cache files cause frequent annoyance, and have led to errors when the cache did not match more recent changes in input data.
We have never tried to read input data into TRIM via a native MySQL interface using an unbuffered query.  This may eliminate the need for makefiles.  It would be fastest to store the input data using MySQL’s MEMORY storage engine (See the database section below).
If that fails, there is another possibility.  Unlike other relational databases, MySQL data tables can be read directly as files.  The records will be sorted in primary key order, so we can simply read the database files rather than the cache files.  This will reduce maintenance and improve reliability, while not impacting speed. 
4. Efficient Retrieval of Values of Variables in Variable List Program Rules

Currently, values for each variable in a variable list program rule are fetched individually; each variable having its own record set (CVarTableSet).  Even simple simulations generally have a few dozen of these; it is not uncommon to have well over a hundred of them.  For runs with multiple simulations, multiply this by several times.  The number of database tables from which the variables are drawn is usually far smaller than the number of variables.  The code should be rewritten so that batches of variables from the same table are fetched using a single query.  It may even be feasible to retrieve all variables at once using a single large join query.  This was far too slow for SQL Server and Oracle, but may work for MySQL, particularly using a native interface.
The time savings from this change would be greater than for any of the other proposed frame changes.  Note that variables for all simulations in a run are stored in a single variable table.  This change could make it possible for all variables needed for an entire run to be retrieved in a single query.
Implemetation Details:  Replace CVarSetTableArray in CVarSet with an array of records containing only variable identifier information.  There will be no instantiations of CVarTableSet.  Have CVarSet handle all data access.  The array of variable identifiers will be used to construct a single query which will then be issued using a native MySQL interface.  It is important for performance that this query be unbuffered, an option not available in ODBC.
Another possibility would be to issue separate unbuffered queries for each table which has variables.  However, I suspect this will not be significantly faster, and it will be much more complicated to implement.

5. Efficient Unit Looping and Summary Statistics
The efficiency of much of CUnit could be improved.  Member functions of this object are called so often in a typical simulation that this could lead to a noticeable improvement in run times.  The problems center around UnitArray:

· Make UnitArray an actual array rather than an MFC dynamic linked list.

· Once the units in a household have been identified, save a sorted list of person IDs in each unit.  GetFirst… and GetNext… functions could then determine immediately which person to go to.  Currently, this requires looping through UnitArray.

· Also save the number of persons in each unit and number of units.  Currently functions such as GetNumPersons and GetNumUnits loop through the entire UnitArray at every call.

The Most Important Frame Changes

The most important frame change for performance gain is #4.  #1, #2, and #5 are next.  As far as #3, a native MySQL read of input data should definitely be tried.  If that is significantly slower, a direct file read of MySQL data should be the lowest priority.
Analysis of simulations to eliminate unnecessary loops should be considered at least as important as frame changes.  

Where Not to Look For Improvements

I had hoped that simulations in the same run could share more resources than they currently do, but I do not see any change that would improve this significantly.  There are many changes that could be made to the frame to make it more understandable and maintainable, but I have not included any change that can not reasonably be expected to result in an increase in performance noticeable to users.
Recommended Database Changes
It is strongly recommended that TRIM upgrade to MySQL 5.1 and consider MySQL 6 when the first production release is available.

For the Engine

New features that improve database performance:

· A new query optimizer.

· Better handling of indices and table joins.

· Better implementation of varchar data type.

· A new BIT data type for Boolean variables.

Also, TRIM has always used the MyISAM database engine.  Several other database engines are available with MySQL.  In particular, the MEMORY or HEAP storage engine should be tried for input data.  This could be used in conjunction with frame change #3 above.

Also, the newer InnoDB storage engine may provide better performance in general.

For the Interface

Several new features will allow the interface to run much more efficiently.

· An INFORMATION_SCHEMA database that contains metadata that the interface has to access by a complicated process of building temporary tables.  This could substantially increase the performance of interface tools that work with simulation results.

· Native MySQL support for views will eliminate other current uses of temporary tables.

