Defining TRIM3 Summary Tables

For each table produced, the module must create a class derived from the base class CTable., and allocate space for it in the CSSim function “CreateTables”. When TRIM was first developed, tables were classified into one of 4 categories:

· Basic Tables

· Detailed Characteristics Tables

· State-level Tables

· Alignment Tables

and users could specify which ones were to be created in a given run. The labelling of tables (i.e. TableId) still generally recognizes this distinction (Basic tables start with “B”, Detailed tables start with “C”, state tables start with “S”, and alignment tables start with “A”). However, since creating summary tables uses relatively little resources, all summary tables are now produced whenever a simulation module is run.
During the course of TRIM development four different methods of defining summary tables were introduced: standard C++, C++ using sections, forms, and forms using sections. The latter was never used for production work, and should never be used, but code for it appears in a few places in the frame. The remaining three methods are described below.

I. The Standard Method of Defining Summary Tables

This is the preferred method. Exceptions to this are noted in II and III below.

Standard summary tables are derived from the CTable class. To define the table, you then override three member functions, the constructor, UpdateTable, and OnWrite. For example, to define a table B1 for MyProgram, you would add the following to the header file, MyProgram.h.

Class CMyProgramTableB1 : public CTable

{

public:

CMyProgramTableB1 (CDatabase *pResultDatabase,

CSim *pParent,

CHousehold *pHouse);

~CMyProgramTableB1() {};

void UpdateTable();

void OnWrite();

private:

CResult<CMyProgramType> &Result;

};

The Constructor

Your constructor must call the default CTable constructor as well. The body of the constructor should be as follows:

CMyProgramTableB1::CMyProgramTableB1 (CDatabase *pResultDatabase,

CSim *pParent,

CHousehold *pHouse) :

CTable (pResultDatabase, pParent, pHouse),

Result (((CMyProgramSim *)pParent)->Result) {

NumIdx = 1;

NumCol = 2;

Setup(20,1);

TableID = “B1”;

}

You need to modify the values of the four lines in the constructor as appropriate for your table. NumIdx should nearly always be 1. See UpdateTable below to see how this index is used to update table cells. NumCol is the number of columns in your table, up to 10. Setup takes two parameters. If the second is set to 1, then the first is the number of rows in the table. Technically, the first parameter gives the number of row groups and the second gives the number of rows per group. In some older tables, you will find values for the second parameter greater than one. For example, Setup(5,4) means that there are five groups of four rows each. TableID should be set to the name of your table.

UpdateTable

The UpdateTable function is called each time the simulation finishes processing a unit. Generally, you will want to update the table cells for each person in the unit. You then have to add a loop to do this,

pUnit->GetFirstPerson();

do {

…

} while (pUnit->GetNextPerson());

In the body of this loop, you will add code to update the cells if certain conditions are met. In order to update a table cell, you need to indicate a row and a column. There are two ways to do this,

Idx[0] = Row;

pCol[Column]->Update(Value);

OR

pCol[Column]->pVal[Row] += Value;

OnWrite

The OnWrite function is called after all households have been processed and just before the table data is written to the database. This function is generally used to calculate row or column totals, calculate percentages, or to scale columns—usually dollar amounts—by 1000 or another power of ten. There are several standard functions available to simplify such operations (note that row and column arguments should be 0-based):

	DivideRow(a, b)
	Divide the values for all columns in row a by the corresponding values in row b, and save the result in a.

	ScaleRow(a, b)
	Divide the values for all columns in row a by the value b.

	Scale(a)
	Divide the values for all rows in a column by the value b.

	
	

	Sum(a, b)
	For each column, sum the values from rows a to b-1, and save the result in b.

	SumCol(a, b)
	For each row, add the value from column a into column b.

	SumGroup(a, b, c)
	This is used to calculate the sums for repeating groups of rows. The starting row is a, the ending row b-1, the start of the sum rows b, and the number of rows in the repeating group is c. For example if you have unweighted and weighted counts for four unit types and total counts below them, you must use SumGroup. You cannot use Sum because you don’t want to sum all rows. You want to count only unweighted rows for the unweighted sum and weighted rows for the weighted sum. You would instead use the following:

SumGroup(0,8,2);

This would sum the unweighted rows 0,2,4, and 6 and place in row 8, and sum the weighted rows 1,3,5, and 7 and place in row 9.

	
	

If none of these operations suit your needs, you can address the totals for individual cells as described in the UpdateTable function. For forms tables (Section III below), two additional functions are defined, DivideColumn and ScaleColumn. These functions are helpful, and should be added to CTable at some point.

CreateTables

Now that we have defined the table, we need to call it in our simulation. All simulations have a member function CreateTables which initializes all the summary tables. The function determines which tables to create by testing the values of boolean flags for each type of summary table. For our example, BasicTables will be true if the user requested basic tables. Thus, we need to add the following to CreateTables,

if (BasicTables) {

pTable[i] = new CMyProgramTableB1(pDatabase, this, pHousehold);

i++;

}

When entering these statements in a simulation coded in sections, you may have to use the following form:

if (BasicTables) {

pTable[i] = new CMyProgramTableB1

(&pHousehold->pProcess->ResultsDatabase, this, pHousehold);

i++;

}

II. Defining Summary Tables Using Sections

Tables should be defined using sections only in simulations which themselves are written using sections, e.g., AlienPrep. Otherwise, the standard method should be used. Simple tables are somewhat more easily defined in sections than in the standard method, but the capabilities of section tables are limited and have sometimes been unable to produce specified tables. New summary tables even for simulations written in sections should be written using the standard method specified above. We intend to gradually retire section tables.

Sections tables are also derived from CTable, with a few differences. First, you must declare one column section and at least one row section. Second, you must override a new function, OnWriteSection, to do what was previously done in OnWrite.

Class CMyProgramTableB1 : public CTable

{

public:

CMyProgramTableB1 (CDatabase *pResultDatabase,

CSim *pParent,

CHousehold *pHouse);

~CMyProgramTableB1() {};

TableSection (Cols, COLUMN, 4, “None”);

TableSection (Rows, ROW, 10, “None”);

void UpdateTable();

void OnWrite();

void OnWriteSection(CTableSec &Sec);

private:

CResult<CMyProgramType> &Result;

};

The four arguments to the macro TableSection are as follows: the name of the section, the type of section (COLUMN or ROW), the number of columns or rows, and the ever-on flag.

The Constructor

The constructor for a section table requires only one line to set the table ID:

CMyProgramTableB1::CMyProgramTableB1 (CDatabase *pResultDatabase,

CSim *pParent,

CHousehold *pHouse) :

CTable (pResultDatabase, pParent, pHouse),

Result (((CMyProgramSim *)pParent)->Result) {

TableID = “B1”;

}

UpdateTable

As in standard tables, UpdateTable is called once per unit. You will generally use this function to loop through all people in the unit. UpdateTable must call the UpdateArray function, which calls the UpdateSection methods of every section in the table (see next section). The argument for UpdateArray is true if you want ever-on numbers—a rare case—and false otherwise.

Void CMyProgramTableB1::UpdateTable() {

do {

UpdateArray (false);

} while (pUnit->GetNextPerson());

pUnit->GetFirstPerson();

}

Note the last line. If you loop through the unit, always return to the first person before leaving the routine.

UpdateSection

UpdateSection is where the values for rows and columns are calculated. Each section works with either an array of rows or an array of columns. These can be updated through the array UpdateLine. For example, say our table has three columns, eligibles, ineligibles, and total:

void CMyProgramTableB1::CCols::UpdateSection(float UpdateLine[]) {

if (Result->Eligible)

UpdateLine[0] = pHousehold->Person->PersonWeight;

else

UpdateLine[1] = pHousehold->Person->PersonWeight;

UpdateLine[2] = pHousehold->Person->PersonWeight;

};

Note that the actual value of a table cell is the result of the corresponding column amount in the column section multiplied by the row amount in the corresponding row section. The value of the second column in the second row of row section Rows, for example, would be Rows[1] * Cols[1]. It is important that you keep this in mind. If you want weighted counts for example, update column values with the person weights and the row values with 1. Or update the columns with 1 and the rows with the person weight. Do not update both rows and columns with the person weight, or you will square the person weight.

OnWrite

As in standard tables, OnWrite is called after all units have been processed and immediately before they are written to the database. The main purpose of this function in section tables, however, is simply to call the OnWriteSection methods of those sections which have one.

void CMyProgramTableB1::OnWrite() {

OnWriteSection(Cols);

// Cols is the name of a section. Note that it is not a string.

};

OnWriteSection

On write section is used for such things as scaling dollar amounts in a row or column or calculating percentages. For example, let’s say our table has two columns which should be expressed as a percentage of the third:

void CMyProgramTableB1::OnWriteSection(CtableSec &Sec) {

Sec.Line[0] /= Sec.Line[2];

Sec.Line[1] /= Sec.Line[2];

Sec.Line[2] /= Sec.Line[2];
};

As we saw in UpdateSection, Sec.Line is an array of either rows or columns, depending on whether the section is a row or column section.

III. Defining Summary Tables in Forms

Tables defined in forms have the advantage in that they can be created and changed without needing to recompile the simulation. This also is their greatest disadvantage, since it means that they are no longer subject to TRIM3 version control. There is no way to guarantee that any summary table template matches what the table forms are actually calculating. Thus, all new standard tables should be written in C++ using the standard method in I above rather than in forms. Forms should be used only to define custom tables or in simulations which are written entirely in forms, i.e., FederalTax, PayrollTax, and ReportGenerator. If a standard summary table written in forms for any other simulation requires modification, it should be converted to a C++ table using method I above.

Required Forms

A summary table is defined by four forms. These forms may, of course, call other forms.

	<table>
	Defines a table with the specified name. Table names can be up to three characters long, e.g., B1.

	UpdateTable<table>
	Called after each unit is simulated. Use this form to specify which people in the unit are to be used in updating the table. This corresponds to the UpdateTable function for standard C++ tables.

	Update<table>
	Use this form to specify how the table cells should be updated given the current person’s characteristics. Not all Forms-based tables have followed this convention. Some include the commands in this form directly in the UpdateTable form. We, however, recommend that tables be written in the style described here.

	WriteTable<table>
	Called after the simulation has completed and before the table is written to the database. Use this form to calculate summary columns and percentages, scale columns, etc. This corresponds to the OnWrite function for standard C++ tables.

Table Form Commands

For <table>
	Create_table <cols> <rows>
	Creates a table with the specified number of rows and columns. This should be the only line in this form.

For UpdateTable<table>
	Enter Update<table> [<persons>]
	Calls the table update routine for the persons specified. The most common value for persons is For_all_unit, but the following may be used as well:

· Head

· Spouse

· For_all_unit

· For_all_household

· For_all_dependents
The last is only available for Federal Tax. This should be the only line in the form unless different parts of the table should be updated for different groups of people.

For Update<table>
	Set_row <row>
	Selects a table row for updating. Row index is zero-based.

	Update_Column <col> <value>
	Adds increments the specified column by the value. For example, an unweighted count might use Update_Column 0 1. The column index is zero-based. You must call Set_row first.

	Offset_row_by <rows>
	Increments the row currently selected by the specified number of rows.

	Get_cell <col> <row>
	Sets the value of the current form to the specified table cell.

	General Forms commands
	Standard Forms commands will be needed to determine the rows and columns to update, and to calculated the value used to update them.

For WriteTable<table>
	Divide_by_col <col1> <col2>
	Divide all cells in col1 by their corresponding values in col2. If a cell in col2 is zero, the col1 cell is not divided.

	Divide_by_row <row1> <row2>
	Divide all cells in row 1 by their corresponding values in row2. If a cell in row2 is zero, the row1 cell is not divided.

	Scale_column <col> <number>
	Divide all cells in the specified column by number.

	Scale_row <row> <number>
	Divide all cells in the specified row by number. Useful for showing, for example, thousands of dollars or millions of people.

	Sum_col <col1> <col2>
	Add the value of each cell in col1 to the corresponding cell in col2.

	Sum_row_group <start row> <sum row> <group size>
	Places in the specified sum row the sum of the values of each column for each row start row to (sum row – 1), incrementing by group size. If you want all rows summed, group size should be 1. If the rows of your table are in groups of 4 and you only want the last row of each summed, start row should be the first of these rows, and group size should be 4.

	General Forms commands
	Usually, only the commands above are used in this form, but you can use other Forms commands to perform other calculations if necessary.

An Example

Let’s say you want to produce the following table X1:

	
	People Receiving Benefits
	Amount of Benefits

	
	Weighted
	Unweighted
	

	65 or Younger
	
	
	

	Over 65
	
	
	

	Total
	
	
	

To do so, you would create the following forms:

X1

Create_table 3 3

UpdateTableX1

Enter UpdateX1 [For_all_unit]

UpdateX1

If Benefits = 0 Return 0

Set_row 0

If Age > 65 Set_row 1

Update_column 0 1

Update_column 1 Personweight

Update_column 2 Benefits

WriteTableX1

Sum_row_group 0 2 1

Scale_column 2 1000

IV. Defining the table’s html template

The above procedures will create a table with a “generic” html output template (i.e. no title, row, or column headings). To supply these, the user must create a php file with the name of the table in the directory wwwroot/SummaryTables/simulation where simulation is the name of the simulation. The best way to do this is to start with a template for an existing table that is similar to the new table and modify it to fit the new table.

An entry should alo be added to the ctd table “TableNames” for the new table. The field “tabletext” should have a brief description of the table. This is what shows up in the “Selected Tables” box on the Summary Tables page. For example:
insert into tablenames(simulation,tableid,tabletext)

values('Poverty','B4','Anti-Poverty Effectiveness of Cash and Near Cash Transfers')

V. Notes

· The maximum number of tables a simulation can have is given by the macro variable MAX_TABLES in TRIMdll/simulate.h. It is currently set to 50.

· If a table is defined using two methods (e.g. standard and forms) an error will occur.
· MaxCols = 10. If NumCol is defined as larger than 10, in debug mode only, the following assertion error will occur:

Debug Assertion Failed!

Program: D:\trimexe\Debug\trim.exe

File: D:\trimexe\TrimDLL\table.cpp

Line:63

